Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 17;68(Pt 12):o3360. doi: 10.1107/S1600536812046375

Methyl 2-(2,3,5-trimethyl-1,1-dioxo-2H-1λ6,2,6-thia­diazin-4-yl)benzoate

Nilay Bhatt a, Pralav Bhatt b, Kiran Nimavat c, Thavendran Govender d, Hendrik G Kruger b, Glenn E M Maguire b,*
PMCID: PMC3588958  PMID: 23476194

Abstract

There are two mol­ecules, A and B, in the asymmetric unit of the title compound, C14H16N2O4S, which is the first example reported in this family of compounds in which the Nsp 3 atom of the thia­diazine ring is methyl­ated. The thia­diazine rings adopt shallow envelope conformations, with the S atoms displaced by 0.319 (12) and 0.182 (12) Å from the mean planes of the other ring atoms in mol­ecules A and B, respectively. The dihedral angles between the thia­diazine mean planes (excluding S) and the attached benzene rings are 86.8 (3) and 86.7 (3)° for mol­ecules A and B, respectively.

Related literature  

For synthetic background, see: Wright (1964). For a related structure, see: Bhatt et al. (2012). For puckering parameters, see: Cremer & Pople (1975).graphic file with name e-68-o3360-scheme1.jpg

Experimental  

Crystal data  

  • C14H16N2O4S

  • M r = 308.35

  • Orthorhombic, Inline graphic

  • a = 13.5954 (3) Å

  • b = 8.0683 (2) Å

  • c = 25.9554 (7) Å

  • V = 2847.09 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 173 K

  • 0.28 × 0.22 × 0.21 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.935, T max = 0.950

  • 33574 measured reflections

  • 6094 independent reflections

  • 4522 reflections with I > 2σ(I)

  • R int = 0.057

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.083

  • S = 0.99

  • 6094 reflections

  • 388 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983), 2751 Friedel pairs

  • Flack parameter: −0.06 (5)

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812046375/hb6962sup1.cif

e-68-o3360-sup1.cif (27.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812046375/hb6962Isup2.hkl

e-68-o3360-Isup2.hkl (298.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812046375/hb6962Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors wish to thank Dr Hong Su from the University of Cape Town for assistance with the data collection and refinement.

supplementary crystallographic information

Comment

The synthesis of 1,2,6-thiadiazine-1,1-dioxides derivatives was first reported using sulfamide with alpha and beta diketones (Wright, 1964). We have reported the 3,5-dimethyl based structure with an aromatic ring at position 4 of the thiadiazine ring containing an ethyl ester functional group (Bhatt et al., 2012). The structure displayed intermolecular hydrogen bonding.

The title compound is also a 3,5 dimethyl based structure with an aromatic ring at the same position on the thiadiazine ring, but here the sp3 nitrogen atom is methylated. This prevents any equivalent hydrogen bonding features in the structure seen in previous examples. The is no π-π stacking or weak CH—π inteactions either in the crystal. The title compound has two isomeric forms in the crystal. The sulfur atoms S1A and S1B deviate from their ring planes (N1A/B, C2/AB, C3A/B, C4A/B, N2A/B) by 0.319 (12) Å and 0.182 (12) Å respectively (Fig. 1) and the benzene rings deviate from the planes by 86.8 (3) and 86.7 (3)°, respectively. The ester functional groups of the two isomers are not co-planar to the benzene ring planes but differ by 16.93 (4) and 16.48 (4)°, respectively.

Experimental

2-(3, 5-dimethyl-1, 1-dioxo-2H-1, 2, 6-thiadiazin-4-yl) benzoic acid (4.75 g,17 mmole) was dissolved in acetone (125 ml), to this K2CO3 (11.75 g, 85 mmole) was added slowly and then stirred for 10–15 min. Methyl iodide (7.23 g, 51 mmole) was added and reaction mixture was refluxed for 3 hrs. The reaction progress was monitored by TLC using ethyl acetate/hexane (8:2,Rf = 0.8). Excess solvent was completely evaporated under vacuum. The residue was treated with conc.HCl to get 2-(2,3,5-trimethyl-1,1-dioxido-2H-1,2,6-thiadiazin-4-yl)benzoic acid as a white solid (4.3 g Yield: 81.9%).

2-(2,3,5-trimethyl-1,1-dioxido-2H-1,2,6-thiadiazin-4-yl)benzoic acid (2.94 g, 10 mmole) was dissolved in methanol (25 ml), to this solution thionyl chloride (5.95 g, 50 mmole) was added slowly and the reaction mixture was refluxed for 3 hrs. The reaction progress was monitored by TLC using ethyl acetate/hexane (8:2,Rf = 0.8). Excess solvent was completely evaporated under vacuum. The residue was purified by silica gel column using methanol/ethyl acetate (1:9) as the eluent to afford the methyl ester as a colourless solid. (1.34 g,Yield: 55%).M.p.= 260 K

Recrystallization using dioxane/water at room temperature afforded yellow blocks.

Refinement

All hydrogen atoms were placed in idealized positions and refined with geometrical constraints. Flack x parameter is -0.0586 with e.s.d. 0.0543.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with H atoms omitted for clarity. Displacement ellipsoids are drawn at 40% probability.

Crystal data

C14H16N2O4S Dx = 1.439 Mg m3
Mr = 308.35 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21 Cell parameters from 33574 reflections
a = 13.5954 (3) Å θ = 2.6–27.5°
b = 8.0683 (2) Å µ = 0.25 mm1
c = 25.9554 (7) Å T = 173 K
V = 2847.09 (12) Å3 Block, yellow
Z = 8 0.28 × 0.22 × 0.21 mm
F(000) = 1296

Data collection

Nonius KappaCCD diffractometer 6094 independent reflections
Radiation source: fine-focus sealed tube 4522 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.057
1.2° φ scans and ω scans θmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −17→17
Tmin = 0.935, Tmax = 0.950 k = −10→10
33574 measured reflections l = −33→30

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0445P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.083 (Δ/σ)max < 0.001
S = 0.99 Δρmax = 0.21 e Å3
6094 reflections Δρmin = −0.25 e Å3
388 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraint Extinction coefficient: 0.0022 (4)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 2751 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: −0.06 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1A 0.16819 (4) 0.24471 (7) 0.03146 (3) 0.02850 (14)
O1A 0.17683 (12) 0.3922 (2) 0.06114 (8) 0.0473 (5)
O2A 0.19297 (13) 0.2610 (2) −0.02157 (7) 0.0484 (5)
O3A 0.01809 (15) 0.1560 (2) 0.18508 (7) 0.0479 (5)
O4A 0.01511 (13) 0.01517 (19) 0.25899 (7) 0.0390 (4)
N1A 0.22849 (14) 0.0982 (2) 0.05644 (9) 0.0407 (6)
N2A 0.05030 (13) 0.1839 (2) 0.03452 (8) 0.0281 (4)
C1A 0.26014 (19) −0.1285 (4) 0.11282 (13) 0.0533 (9)
H1A1 0.3238 −0.1211 0.0953 0.080*
H1A2 0.2355 −0.2424 0.1107 0.080*
H1A3 0.2680 −0.0971 0.1491 0.080*
C2A 0.18851 (17) −0.0136 (3) 0.08748 (10) 0.0324 (6)
C3A 0.08626 (17) −0.0289 (2) 0.09642 (9) 0.0242 (5)
C4A 0.02022 (16) 0.0661 (3) 0.06916 (9) 0.0252 (5)
C5A −0.08899 (15) 0.0468 (3) 0.07394 (11) 0.0315 (6)
H5A1 −0.1181 0.1524 0.0847 0.047*
H5A2 −0.1038 −0.0384 0.0997 0.047*
H5A3 −0.1165 0.0138 0.0406 0.047*
C6A −0.01996 (19) 0.2803 (3) 0.00249 (11) 0.0439 (7)
H6A1 −0.0556 0.2049 −0.0205 0.066*
H6A2 0.0163 0.3619 −0.0181 0.066*
H6A3 −0.0669 0.3377 0.0249 0.066*
C7A 0.04993 (16) −0.1651 (3) 0.13101 (10) 0.0254 (5)
C8A 0.02189 (16) −0.1410 (3) 0.18317 (9) 0.0248 (5)
C9A −0.00644 (17) −0.2776 (3) 0.21258 (11) 0.0334 (6)
H9A −0.0260 −0.2618 0.2474 0.040*
C10A −0.00654 (18) −0.4363 (3) 0.19185 (10) 0.0359 (6)
H10A −0.0251 −0.5284 0.2125 0.043*
C11A 0.02038 (17) −0.4595 (3) 0.14124 (11) 0.0343 (6)
H11A 0.0201 −0.5677 0.1268 0.041*
C12A 0.04773 (17) −0.3253 (3) 0.11149 (10) 0.0299 (6)
H12A 0.0656 −0.3431 0.0765 0.036*
C13A 0.01886 (17) 0.0251 (3) 0.20735 (10) 0.0303 (6)
C14A 0.0134 (2) 0.1689 (3) 0.28670 (11) 0.0429 (7)
H14A 0.0672 0.2399 0.2747 0.064*
H14B 0.0214 0.1471 0.3236 0.064*
H14C −0.0496 0.2248 0.2808 0.064*
S1B 0.10386 (4) 0.26833 (7) 0.45180 (2) 0.02889 (15)
O1B 0.08708 (12) 0.3200 (2) 0.50324 (7) 0.0447 (5)
O2B 0.08897 (11) 0.09637 (19) 0.44206 (8) 0.0484 (5)
O3B 0.24965 (14) 0.35986 (19) 0.29068 (7) 0.0485 (5)
O4B 0.24683 (13) 0.50555 (18) 0.21771 (7) 0.0395 (5)
N1B 0.04139 (13) 0.3758 (2) 0.41302 (9) 0.0339 (5)
N2B 0.22197 (13) 0.3092 (2) 0.43775 (8) 0.0281 (5)
C1B 0.00445 (19) 0.5920 (4) 0.35389 (13) 0.0504 (8)
H1B1 0.0175 0.5786 0.3170 0.076*
H1B2 0.0086 0.7096 0.3631 0.076*
H1B3 −0.0616 0.5504 0.3618 0.076*
C2B 0.07937 (18) 0.4957 (3) 0.38431 (9) 0.0285 (5)
C3B 0.18034 (17) 0.5317 (3) 0.38014 (9) 0.0243 (5)
C4B 0.24909 (16) 0.4372 (3) 0.40624 (9) 0.0242 (5)
C5B 0.35705 (16) 0.4635 (3) 0.40010 (11) 0.0332 (6)
H5B1 0.3863 0.4888 0.4337 0.050*
H5B2 0.3686 0.5562 0.3765 0.050*
H5B3 0.3872 0.3628 0.3861 0.050*
C6B 0.29451 (18) 0.2085 (3) 0.46649 (11) 0.0398 (7)
H6B1 0.3402 0.1565 0.4422 0.060*
H6B2 0.2601 0.1224 0.4861 0.060*
H6B3 0.3312 0.2799 0.4902 0.060*
C7B 0.21176 (16) 0.6741 (2) 0.34682 (10) 0.0250 (5)
C8B 0.23889 (15) 0.6576 (3) 0.29426 (10) 0.0259 (5)
C9B 0.26085 (17) 0.7992 (3) 0.26573 (10) 0.0318 (6)
H9B 0.2788 0.7882 0.2305 0.038*
C10B 0.25717 (18) 0.9542 (3) 0.28739 (11) 0.0367 (6)
H10B 0.2726 1.0490 0.2672 0.044*
C11B 0.23110 (18) 0.9722 (3) 0.33840 (10) 0.0348 (6)
H11B 0.2286 1.0794 0.3535 0.042*
C12B 0.20849 (18) 0.8329 (3) 0.36763 (10) 0.0313 (6)
H12B 0.1903 0.8465 0.4027 0.038*
C13B 0.24545 (16) 0.4921 (3) 0.26875 (10) 0.0283 (6)
C14B 0.2508 (2) 0.3515 (3) 0.18876 (10) 0.0433 (7)
H14D 0.3151 0.2989 0.1939 0.065*
H14E 0.2412 0.3748 0.1520 0.065*
H14F 0.1989 0.2768 0.2008 0.065*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1A 0.0315 (3) 0.0281 (3) 0.0259 (3) −0.0024 (3) 0.0061 (3) 0.0015 (3)
O1A 0.0388 (10) 0.0397 (10) 0.0635 (15) −0.0022 (8) −0.0006 (9) −0.0202 (9)
O2A 0.0550 (11) 0.0627 (12) 0.0276 (11) −0.0042 (9) 0.0155 (9) 0.0088 (9)
O3A 0.0854 (15) 0.0268 (10) 0.0315 (11) −0.0043 (9) 0.0104 (10) −0.0007 (8)
O4A 0.0536 (11) 0.0373 (10) 0.0261 (11) 0.0004 (8) 0.0042 (9) −0.0035 (8)
N1A 0.0275 (11) 0.0427 (12) 0.0520 (16) 0.0031 (9) 0.0068 (10) 0.0163 (11)
N2A 0.0270 (10) 0.0294 (10) 0.0280 (12) −0.0015 (8) −0.0031 (9) 0.0067 (10)
C1A 0.0287 (14) 0.0637 (19) 0.067 (2) 0.0114 (13) 0.0020 (14) 0.0279 (16)
C2A 0.0294 (13) 0.0372 (14) 0.0305 (15) 0.0034 (11) 0.0010 (11) 0.0061 (11)
C3A 0.0271 (12) 0.0242 (11) 0.0213 (13) −0.0004 (9) 0.0015 (10) −0.0011 (10)
C4A 0.0295 (12) 0.0239 (12) 0.0223 (13) −0.0019 (9) 0.0007 (10) −0.0019 (10)
C5A 0.0271 (13) 0.0286 (12) 0.0388 (16) −0.0015 (10) −0.0014 (11) 0.0032 (11)
C6A 0.0427 (16) 0.0372 (14) 0.052 (2) 0.0030 (12) −0.0096 (14) 0.0166 (13)
C7A 0.0200 (11) 0.0265 (12) 0.0297 (15) 0.0033 (9) −0.0009 (10) 0.0040 (10)
C8A 0.0251 (11) 0.0252 (12) 0.0240 (14) 0.0013 (9) −0.0012 (10) 0.0028 (10)
C9A 0.0333 (13) 0.0342 (13) 0.0328 (16) −0.0006 (11) 0.0035 (11) 0.0058 (12)
C10A 0.0424 (14) 0.0282 (13) 0.0372 (17) −0.0024 (11) 0.0017 (13) 0.0120 (12)
C11A 0.0386 (14) 0.0247 (12) 0.0396 (17) 0.0033 (10) 0.0015 (12) 0.0029 (12)
C12A 0.0328 (13) 0.0284 (13) 0.0284 (15) 0.0012 (10) 0.0023 (11) −0.0004 (11)
C13A 0.0301 (14) 0.0330 (14) 0.0279 (16) −0.0022 (10) 0.0037 (11) 0.0006 (11)
C14A 0.0494 (16) 0.0449 (16) 0.0342 (17) −0.0054 (12) 0.0060 (13) −0.0159 (12)
S1B 0.0294 (3) 0.0277 (3) 0.0295 (4) 0.0015 (2) 0.0053 (3) 0.0029 (3)
O1B 0.0433 (10) 0.0624 (12) 0.0284 (12) 0.0088 (9) 0.0098 (9) 0.0041 (10)
O2B 0.0416 (10) 0.0235 (8) 0.0800 (17) −0.0027 (7) 0.0053 (10) −0.0049 (9)
O3B 0.0853 (15) 0.0260 (9) 0.0342 (12) 0.0006 (10) 0.0057 (11) 0.0002 (8)
O4B 0.0579 (12) 0.0349 (10) 0.0257 (12) −0.0001 (8) 0.0039 (8) −0.0017 (8)
N1B 0.0273 (11) 0.0402 (12) 0.0342 (13) −0.0019 (9) 0.0021 (9) 0.0113 (10)
N2B 0.0282 (10) 0.0297 (9) 0.0266 (12) 0.0022 (8) −0.0006 (9) 0.0040 (9)
C1B 0.0318 (14) 0.0645 (18) 0.055 (2) −0.0014 (13) −0.0074 (14) 0.0273 (15)
C2B 0.0301 (12) 0.0297 (12) 0.0257 (14) 0.0033 (10) −0.0003 (10) 0.0019 (10)
C3B 0.0283 (12) 0.0239 (11) 0.0208 (13) 0.0020 (9) 0.0031 (10) −0.0003 (10)
C4B 0.0281 (11) 0.0217 (11) 0.0230 (13) −0.0006 (9) 0.0002 (10) −0.0010 (10)
C5B 0.0277 (12) 0.0356 (13) 0.0364 (16) 0.0004 (10) 0.0000 (11) 0.0068 (11)
C6B 0.0340 (13) 0.0436 (13) 0.0417 (19) 0.0071 (11) −0.0039 (12) 0.0145 (13)
C7B 0.0215 (11) 0.0239 (12) 0.0295 (15) −0.0005 (9) −0.0045 (10) 0.0020 (10)
C8B 0.0238 (12) 0.0240 (12) 0.0299 (15) −0.0008 (9) −0.0002 (10) 0.0024 (10)
C9B 0.0350 (13) 0.0350 (13) 0.0254 (15) 0.0004 (10) 0.0011 (11) 0.0061 (11)
C10B 0.0433 (15) 0.0256 (13) 0.0413 (18) −0.0019 (11) −0.0004 (13) 0.0077 (12)
C11B 0.0405 (14) 0.0223 (12) 0.0415 (18) 0.0003 (10) −0.0050 (12) 0.0019 (11)
C12B 0.0332 (13) 0.0296 (13) 0.0311 (16) 0.0022 (11) −0.0039 (11) −0.0003 (11)
C13B 0.0261 (12) 0.0324 (14) 0.0265 (15) −0.0028 (10) 0.0026 (11) 0.0000 (11)
C14B 0.0547 (17) 0.0465 (16) 0.0286 (17) −0.0063 (12) 0.0051 (13) −0.0135 (12)

Geometric parameters (Å, º)

S1A—O1A 1.4223 (17) S1B—O1B 1.4171 (18)
S1A—O2A 1.4233 (19) S1B—O2B 1.4247 (17)
S1A—N1A 1.578 (2) S1B—N1B 1.577 (2)
S1A—N2A 1.6781 (18) S1B—N2B 1.6793 (19)
O3A—C13A 1.204 (3) O3B—C13B 1.211 (3)
O4A—C13A 1.344 (3) O4B—C13B 1.329 (3)
O4A—C14A 1.434 (3) O4B—C14B 1.453 (3)
N1A—C2A 1.326 (3) N1B—C2B 1.326 (3)
N2A—C4A 1.371 (3) N2B—C4B 1.368 (3)
N2A—C6A 1.486 (3) N2B—C6B 1.480 (3)
C1A—C2A 1.496 (3) C1B—C2B 1.505 (3)
C1A—H1A1 0.9800 C1B—H1B1 0.9800
C1A—H1A2 0.9800 C1B—H1B2 0.9800
C1A—H1A3 0.9800 C1B—H1B3 0.9800
C2A—C3A 1.415 (3) C2B—C3B 1.407 (3)
C3A—C4A 1.377 (3) C3B—C4B 1.383 (3)
C3A—C7A 1.502 (3) C3B—C7B 1.500 (3)
C4A—C5A 1.498 (3) C4B—C5B 1.492 (3)
C5A—H5A1 0.9800 C5B—H5B1 0.9800
C5A—H5A2 0.9800 C5B—H5B2 0.9800
C5A—H5A3 0.9800 C5B—H5B3 0.9800
C6A—H6A1 0.9800 C6B—H6B1 0.9800
C6A—H6A2 0.9800 C6B—H6B2 0.9800
C6A—H6A3 0.9800 C6B—H6B3 0.9800
C7A—C12A 1.388 (3) C7B—C12B 1.391 (3)
C7A—C8A 1.420 (3) C7B—C8B 1.419 (3)
C8A—C9A 1.395 (3) C8B—C9B 1.394 (3)
C8A—C13A 1.481 (3) C8B—C13B 1.493 (3)
C9A—C10A 1.389 (4) C9B—C10B 1.372 (3)
C9A—H9A 0.9500 C9B—H9B 0.9500
C10A—C11A 1.376 (3) C10B—C11B 1.378 (4)
C10A—H10A 0.9500 C10B—H10B 0.9500
C11A—C12A 1.381 (3) C11B—C12B 1.391 (3)
C11A—H11A 0.9500 C11B—H11B 0.9500
C12A—H12A 0.9500 C12B—H12B 0.9500
C14A—H14A 0.9800 C14B—H14D 0.9800
C14A—H14B 0.9800 C14B—H14E 0.9800
C14A—H14C 0.9800 C14B—H14F 0.9800
O1A—S1A—O2A 115.27 (12) O1B—S1B—O2B 115.51 (12)
O1A—S1A—N1A 111.17 (13) O1B—S1B—N1B 110.67 (11)
O2A—S1A—N1A 110.10 (11) O2B—S1B—N1B 110.22 (11)
O1A—S1A—N2A 107.33 (10) O1B—S1B—N2B 107.50 (10)
O2A—S1A—N2A 107.39 (11) O2B—S1B—N2B 106.78 (9)
N1A—S1A—N2A 104.94 (10) N1B—S1B—N2B 105.57 (10)
C13A—O4A—C14A 116.69 (19) C13B—O4B—C14B 116.48 (18)
C2A—N1A—S1A 123.12 (16) C2B—N1B—S1B 123.38 (17)
C4A—N2A—C6A 122.55 (19) C4B—N2B—C6B 122.43 (19)
C4A—N2A—S1A 121.25 (15) C4B—N2B—S1B 122.41 (15)
C6A—N2A—S1A 115.74 (15) C6B—N2B—S1B 114.83 (16)
C2A—C1A—H1A1 109.5 C2B—C1B—H1B1 109.5
C2A—C1A—H1A2 109.5 C2B—C1B—H1B2 109.5
H1A1—C1A—H1A2 109.5 H1B1—C1B—H1B2 109.5
C2A—C1A—H1A3 109.5 C2B—C1B—H1B3 109.5
H1A1—C1A—H1A3 109.5 H1B1—C1B—H1B3 109.5
H1A2—C1A—H1A3 109.5 H1B2—C1B—H1B3 109.5
N1A—C2A—C3A 124.2 (2) N1B—C2B—C3B 125.0 (2)
N1A—C2A—C1A 114.9 (2) N1B—C2B—C1B 114.1 (2)
C3A—C2A—C1A 120.9 (2) C3B—C2B—C1B 120.9 (2)
C4A—C3A—C2A 120.5 (2) C4B—C3B—C2B 120.5 (2)
C4A—C3A—C7A 120.01 (19) C4B—C3B—C7B 120.79 (19)
C2A—C3A—C7A 119.01 (19) C2B—C3B—C7B 118.7 (2)
N2A—C4A—C3A 121.93 (19) N2B—C4B—C3B 121.77 (19)
N2A—C4A—C5A 114.97 (19) N2B—C4B—C5B 115.88 (19)
C3A—C4A—C5A 123.1 (2) C3B—C4B—C5B 122.3 (2)
C4A—C5A—H5A1 109.5 C4B—C5B—H5B1 109.5
C4A—C5A—H5A2 109.5 C4B—C5B—H5B2 109.5
H5A1—C5A—H5A2 109.5 H5B1—C5B—H5B2 109.5
C4A—C5A—H5A3 109.5 C4B—C5B—H5B3 109.5
H5A1—C5A—H5A3 109.5 H5B1—C5B—H5B3 109.5
H5A2—C5A—H5A3 109.5 H5B2—C5B—H5B3 109.5
N2A—C6A—H6A1 109.5 N2B—C6B—H6B1 109.5
N2A—C6A—H6A2 109.5 N2B—C6B—H6B2 109.5
H6A1—C6A—H6A2 109.5 H6B1—C6B—H6B2 109.5
N2A—C6A—H6A3 109.5 N2B—C6B—H6B3 109.5
H6A1—C6A—H6A3 109.5 H6B1—C6B—H6B3 109.5
H6A2—C6A—H6A3 109.5 H6B2—C6B—H6B3 109.5
C12A—C7A—C8A 118.0 (2) C12B—C7B—C8B 117.9 (2)
C12A—C7A—C3A 118.0 (2) C12B—C7B—C3B 118.2 (2)
C8A—C7A—C3A 123.9 (2) C8B—C7B—C3B 123.80 (19)
C9A—C8A—C7A 119.2 (2) C9B—C8B—C7B 119.3 (2)
C9A—C8A—C13A 118.4 (2) C9B—C8B—C13B 119.0 (2)
C7A—C8A—C13A 122.4 (2) C7B—C8B—C13B 121.7 (2)
C10A—C9A—C8A 121.1 (2) C10B—C9B—C8B 121.4 (2)
C10A—C9A—H9A 119.4 C10B—C9B—H9B 119.3
C8A—C9A—H9A 119.4 C8B—C9B—H9B 119.3
C11A—C10A—C9A 119.6 (2) C9B—C10B—C11B 119.9 (2)
C11A—C10A—H10A 120.2 C9B—C10B—H10B 120.0
C9A—C10A—H10A 120.2 C11B—C10B—H10B 120.0
C10A—C11A—C12A 119.9 (2) C10B—C11B—C12B 119.7 (2)
C10A—C11A—H11A 120.0 C10B—C11B—H11B 120.2
C12A—C11A—H11A 120.0 C12B—C11B—H11B 120.2
C11A—C12A—C7A 122.1 (2) C7B—C12B—C11B 121.7 (2)
C11A—C12A—H12A 118.9 C7B—C12B—H12B 119.1
C7A—C12A—H12A 118.9 C11B—C12B—H12B 119.1
O3A—C13A—O4A 122.1 (2) O3B—C13B—O4B 122.7 (2)
O3A—C13A—C8A 126.2 (2) O3B—C13B—C8B 125.6 (2)
O4A—C13A—C8A 111.7 (2) O4B—C13B—C8B 111.7 (2)
O4A—C14A—H14A 109.5 O4B—C14B—H14D 109.5
O4A—C14A—H14B 109.5 O4B—C14B—H14E 109.5
H14A—C14A—H14B 109.5 H14D—C14B—H14E 109.5
O4A—C14A—H14C 109.5 O4B—C14B—H14F 109.5
H14A—C14A—H14C 109.5 H14D—C14B—H14F 109.5
H14B—C14A—H14C 109.5 H14E—C14B—H14F 109.5
O1A—S1A—N1A—C2A 95.6 (2) O1B—S1B—N1B—C2B 103.6 (2)
O2A—S1A—N1A—C2A −135.4 (2) O2B—S1B—N1B—C2B −127.4 (2)
N2A—S1A—N1A—C2A −20.1 (3) N2B—S1B—N1B—C2B −12.5 (2)
O1A—S1A—N2A—C4A −96.67 (19) O1B—S1B—N2B—C4B −106.12 (19)
O2A—S1A—N2A—C4A 138.84 (18) O2B—S1B—N2B—C4B 129.36 (19)
N1A—S1A—N2A—C4A 21.7 (2) N1B—S1B—N2B—C4B 12.1 (2)
O1A—S1A—N2A—C6A 75.8 (2) O1B—S1B—N2B—C6B 67.42 (19)
O2A—S1A—N2A—C6A −48.72 (19) O2B—S1B—N2B—C6B −57.1 (2)
N1A—S1A—N2A—C6A −165.88 (19) N1B—S1B—N2B—C6B −174.41 (18)
S1A—N1A—C2A—C3A 8.8 (4) S1B—N1B—C2B—C3B 7.2 (4)
S1A—N1A—C2A—C1A −172.1 (2) S1B—N1B—C2B—C1B −174.6 (2)
N1A—C2A—C3A—C4A 5.5 (4) N1B—C2B—C3B—C4B 1.3 (4)
C1A—C2A—C3A—C4A −173.6 (2) C1B—C2B—C3B—C4B −176.7 (2)
N1A—C2A—C3A—C7A 177.7 (2) N1B—C2B—C3B—C7B −178.7 (2)
C1A—C2A—C3A—C7A −1.3 (3) C1B—C2B—C3B—C7B 3.2 (3)
C6A—N2A—C4A—C3A 176.2 (2) C6B—N2B—C4B—C3B −179.1 (2)
S1A—N2A—C4A—C3A −11.9 (3) S1B—N2B—C4B—C3B −6.1 (3)
C6A—N2A—C4A—C5A −2.4 (3) C6B—N2B—C4B—C5B 3.4 (3)
S1A—N2A—C4A—C5A 169.47 (16) S1B—N2B—C4B—C5B 176.44 (17)
C2A—C3A—C4A—N2A −3.3 (3) C2B—C3B—C4B—N2B −1.6 (3)
C7A—C3A—C4A—N2A −175.4 (2) C7B—C3B—C4B—N2B 178.5 (2)
C2A—C3A—C4A—C5A 175.3 (2) C2B—C3B—C4B—C5B 175.7 (2)
C7A—C3A—C4A—C5A 3.1 (3) C7B—C3B—C4B—C5B −4.2 (3)
C4A—C3A—C7A—C12A 96.2 (3) C4B—C3B—C7B—C12B −97.4 (3)
C2A—C3A—C7A—C12A −76.1 (3) C2B—C3B—C7B—C12B 82.7 (3)
C4A—C3A—C7A—C8A −86.8 (3) C4B—C3B—C7B—C8B 86.7 (3)
C2A—C3A—C7A—C8A 100.9 (3) C2B—C3B—C7B—C8B −93.2 (3)
C12A—C7A—C8A—C9A 0.1 (3) C12B—C7B—C8B—C9B −0.1 (3)
C3A—C7A—C8A—C9A −177.0 (2) C3B—C7B—C8B—C9B 175.9 (2)
C12A—C7A—C8A—C13A −178.2 (2) C12B—C7B—C8B—C13B 179.3 (2)
C3A—C7A—C8A—C13A 4.7 (3) C3B—C7B—C8B—C13B −4.7 (3)
C7A—C8A—C9A—C10A 0.7 (3) C7B—C8B—C9B—C10B 0.2 (3)
C13A—C8A—C9A—C10A 179.1 (2) C13B—C8B—C9B—C10B −179.2 (2)
C8A—C9A—C10A—C11A −0.9 (4) C8B—C9B—C10B—C11B −0.1 (4)
C9A—C10A—C11A—C12A 0.3 (3) C9B—C10B—C11B—C12B −0.1 (4)
C10A—C11A—C12A—C7A 0.5 (3) C8B—C7B—C12B—C11B −0.1 (3)
C8A—C7A—C12A—C11A −0.7 (3) C3B—C7B—C12B—C11B −176.3 (2)
C3A—C7A—C12A—C11A 176.6 (2) C10B—C11B—C12B—C7B 0.2 (4)
C14A—O4A—C13A—O3A −2.0 (3) C14B—O4B—C13B—O3B 1.7 (3)
C14A—O4A—C13A—C8A 179.1 (2) C14B—O4B—C13B—C8B −178.6 (2)
C9A—C8A—C13A—O3A −161.3 (2) C9B—C8B—C13B—O3B 163.0 (2)
C7A—C8A—C13A—O3A 16.9 (4) C7B—C8B—C13B—O3B −16.5 (4)
C9A—C8A—C13A—O4A 17.5 (3) C9B—C8B—C13B—O4B −16.7 (3)
C7A—C8A—C13A—O4A −164.2 (2) C7B—C8B—C13B—O4B 163.9 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6962).

References

  1. Bhatt, N., Bhatt, P., Vyas, K. B., Nimavat, K., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2012). Acta Cryst. E68, o2160. [DOI] [PMC free article] [PubMed]
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  6. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Wright, J. B. (1964). J. Org. Chem. 29, 1905–1909.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812046375/hb6962sup1.cif

e-68-o3360-sup1.cif (27.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812046375/hb6962Isup2.hkl

e-68-o3360-Isup2.hkl (298.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812046375/hb6962Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES