Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 17;68(Pt 12):o3361. doi: 10.1107/S1600536812046077

4-Amino­pyridinium 2-chloro-4-nitro­benzoate monohydrate

Kelsey L Savig a, Andreas Lemmerer a,*
PMCID: PMC3588959  PMID: 23476195

Abstract

In the title hydrated mol­ecular salt, C5H7N2 +·C7H3ClNO4 ·H2O, the ions and water mol­ecules assemble into ribbons of R 6 5(22) rings along the c axis via O(water)—H⋯O, N+—H⋯O(water) and N—H⋯O hydrogen bonds. N—H⋯O hydrogen bonds connect adjacent ribbons along the c-axis direction via R 4 4(12) rings, forming hydrogen-bonded layers. The CO2 and NO2 groups make dihedral angles of 81.8 (2) and 1.4 (2)°, respectively, with the ring in the anion.

Related literature  

For related structures, see: Lemmerer et al. (2010). For graph-set notation, see: Bernstein et al. (1995). graphic file with name e-68-o3361-scheme1.jpg

Experimental  

Crystal data  

  • C5H7N2 +·C7H3ClNO4 ·H2O

  • M r = 313.7

  • Monoclinic, Inline graphic

  • a = 14.4500 (5) Å

  • b = 14.3300 (5) Å

  • c = 6.9918 (2) Å

  • β = 97.804 (2)°

  • V = 1434.37 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 173 K

  • 0.78 × 0.31 × 0.09 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: integration (XPREP; Bruker, 2004) T min = 0.896, T max = 0.977

  • 14928 measured reflections

  • 3456 independent reflections

  • 2685 reflections with I > 2σ(I)

  • R int = 0.061

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.122

  • S = 1.04

  • 3456 reflections

  • 210 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.5 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812046077/fy2073sup1.cif

e-68-o3361-sup1.cif (20.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812046077/fy2073Isup2.hkl

e-68-o3361-Isup2.hkl (166.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812046077/fy2073Isup3.mol

Supplementary material file. DOI: 10.1107/S1600536812046077/fy2073Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1W i 0.93 (3) 1.72 (3) 2.641 (2) 170 (2)
N3—H3A⋯O1 0.94 (2) 1.99 (2) 2.926 (2) 171.1 (19)
N3—H3B⋯O2ii 0.84 (2) 2.16 (3) 2.982 (2) 165 (2)
O1W—H1W⋯O1iii 0.75 (3) 1.96 (3) 2.698 (2) 166 (3)
O1W—H2W⋯O2 0.78 (4) 1.99 (4) 2.729 (2) 158 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the University of the Witwatersrand and the Mol­ecular Sciences Institute, which are thanked for providing the infrastructure required to do this work, and the Friedel Sellshop grant for financial support.

supplementary crystallographic information

Comment

The title molecular salt is part of a larger research project looking at the factors that determine if a salt or a co-crystal forms between a specific carboxylic acid and various pyridine ring systems (Lemmerer et al., 2010).

In molecular salt (I) (Fig. 1), formed by dissolving 4-aminopyridine and 2-chloro-4-nitrobenzoic acid in methanol, two kinds of hydrogen-bonded rings are formed. The ring R56(22) (Bernstein et al., 1995) uses O1W—H···O-, N+—H···O and N—H···O- hydrogen bonds to connect all three species together into a 1-D ribbon (Fig. 2) along the c-axis. In addition, a R44(12) ring is formed between two amine groups and two carboxylate groups to connect two ribbons together to form layers (Fig. 3).

Experimental

Crystals were grown by slow evaporation of a methanol solution of 2-chloro-4-nitrobenzoic acid (0.100 g; 0.496 mmol) and 4-aminopyridine (0.047 g; 0.50 mmol) in 8 ml of methanol, and afforded colourless plates after three days of slow evaporation at ambient conditions.

Refinement

The aromatic C-bound H atoms were geometrically placed with C—H bond lengths of 0.95 Å, and were refined as riding with Uiso(H) = 1.2Ueq(C). The O-bound H atoms of the water molecule and the N-bound H atoms were located in the difference map and their coordinates as well as isotropic displacement parameters were refined freely. The residual electron density around the O atom of the water molecule was found to not correspond to any H atoms by inspection of the hydrogen bonding geometry.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I) showing the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level.

Fig. 2.

Fig. 2.

Hydrogen bonding diagram of (I) showing the R56(22) rings to form ribbons. Intermolecular hydrogen bonds are shown as dashed red lines forming dimers. Atoms with superscrips (i) and (ii) are at the symmetry positions (x, y, z - 1) and (x, -y + 1/2, z - 1/2) respectively.

Fig. 3.

Fig. 3.

The layers form by combining the one-dimensional ribbons using R44(12) rings.

Crystal data

C5H7N2+·C7H3ClNO4·H2O F(000) = 648
Mr = 313.7 Dx = 1.453 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4262 reflections
a = 14.4500 (5) Å θ = 2.8–27.8°
b = 14.3300 (5) Å µ = 0.29 mm1
c = 6.9918 (2) Å T = 173 K
β = 97.804 (2)° Plate, colourless
V = 1434.37 (8) Å3 0.78 × 0.31 × 0.09 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 2685 reflections with I > 2σ(I)
ω scans Rint = 0.061
Absorption correction: integration (XPREP; Bruker, 2004) θmax = 28°, θmin = 1.4°
Tmin = 0.896, Tmax = 0.977 h = −19→19
14928 measured reflections k = −18→18
3456 independent reflections l = −8→9

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0662P)2 + 0.1397P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.122 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.5 e Å3
3456 reflections Δρmin = −0.36 e Å3
210 parameters

Special details

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2004)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.69246 (11) 0.61389 (11) 0.2594 (2) 0.0261 (3)
C2 0.61757 (12) 0.55610 (11) 0.2858 (2) 0.0271 (3)
C3 0.52758 (11) 0.57500 (11) 0.2008 (2) 0.0284 (3)
H3 0.4772 0.5348 0.2188 0.034*
C4 0.51347 (11) 0.65438 (12) 0.0887 (2) 0.0290 (4)
C5 0.58469 (12) 0.71419 (12) 0.0592 (2) 0.0325 (4)
H5 0.5725 0.7687 −0.0176 0.039*
C6 0.67437 (12) 0.69317 (12) 0.1438 (2) 0.0311 (4)
H6 0.7245 0.7332 0.1232 0.037*
C7 0.79130 (11) 0.59307 (11) 0.3515 (2) 0.0291 (3)
N1 0.41775 (10) 0.67644 (11) 0.0004 (2) 0.0349 (3)
O1 0.84325 (9) 0.55490 (9) 0.24589 (19) 0.0412 (3)
O2 0.81313 (9) 0.61801 (10) 0.52270 (17) 0.0424 (3)
O3 0.35519 (9) 0.62315 (10) 0.0282 (2) 0.0462 (3)
O4 0.40575 (10) 0.74821 (11) −0.0962 (2) 0.0513 (4)
Cl1 0.63660 (3) 0.45679 (3) 0.42817 (7) 0.04119 (15)
C8 0.96351 (14) 0.15836 (13) 0.3659 (2) 0.0361 (4)
H8 1.0019 0.1049 0.3936 0.043*
C9 1.00312 (12) 0.24412 (13) 0.3780 (2) 0.0341 (4)
H9 1.0687 0.2506 0.4123 0.041*
C10 0.94613 (12) 0.32426 (12) 0.3393 (2) 0.0293 (4)
C11 0.84995 (12) 0.30971 (12) 0.2835 (2) 0.0309 (4)
H11 0.8095 0.3614 0.2527 0.037*
C12 0.81509 (13) 0.22161 (13) 0.2739 (2) 0.0352 (4)
H12 0.75 0.2124 0.237 0.042*
N2 0.87086 (12) 0.14714 (11) 0.3155 (2) 0.0357 (3)
N3 0.98294 (12) 0.40973 (11) 0.3540 (2) 0.0368 (4)
H2 0.8439 (17) 0.0887 (18) 0.322 (3) 0.061 (7)*
H3A 0.9432 (16) 0.4610 (15) 0.322 (3) 0.045 (6)*
H3B 1.0408 (17) 0.4127 (15) 0.391 (3) 0.048 (6)*
O1W 0.8108 (2) 0.52435 (14) 0.8618 (3) 0.1094 (11)
H1W 0.817 (2) 0.541 (2) 0.965 (5) 0.080 (10)*
H2W 0.806 (2) 0.562 (2) 0.781 (5) 0.096 (11)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0257 (8) 0.0296 (8) 0.0228 (7) 0.0026 (6) 0.0032 (6) −0.0001 (6)
C2 0.0310 (8) 0.0261 (8) 0.0245 (7) 0.0017 (6) 0.0048 (6) 0.0017 (6)
C3 0.0268 (8) 0.0306 (8) 0.0281 (8) −0.0034 (6) 0.0046 (6) −0.0036 (6)
C4 0.0241 (8) 0.0377 (9) 0.0244 (7) 0.0046 (6) 0.0007 (6) −0.0018 (6)
C5 0.0319 (9) 0.0339 (9) 0.0312 (8) 0.0036 (7) 0.0030 (7) 0.0082 (7)
C6 0.0265 (9) 0.0340 (9) 0.0325 (8) −0.0007 (7) 0.0033 (6) 0.0062 (7)
C7 0.0260 (8) 0.0281 (8) 0.0319 (8) 0.0004 (6) −0.0007 (6) 0.0059 (6)
N1 0.0256 (8) 0.0466 (9) 0.0316 (7) 0.0043 (6) −0.0001 (6) −0.0049 (7)
O1 0.0307 (7) 0.0477 (8) 0.0437 (7) 0.0115 (6) −0.0002 (5) −0.0040 (6)
O2 0.0367 (7) 0.0580 (8) 0.0302 (6) −0.0009 (6) −0.0039 (5) −0.0001 (6)
O3 0.0254 (7) 0.0589 (9) 0.0530 (8) −0.0023 (6) 0.0004 (6) −0.0042 (7)
O4 0.0382 (8) 0.0584 (9) 0.0541 (8) 0.0136 (7) −0.0054 (6) 0.0154 (7)
Cl1 0.0433 (3) 0.0341 (2) 0.0463 (3) 0.00160 (18) 0.0065 (2) 0.01473 (18)
C8 0.0429 (11) 0.0369 (9) 0.0287 (8) 0.0107 (8) 0.0059 (7) 0.0010 (7)
C9 0.0295 (9) 0.0400 (10) 0.0323 (8) 0.0069 (7) 0.0027 (7) 0.0002 (7)
C10 0.0306 (9) 0.0360 (9) 0.0214 (7) 0.0035 (7) 0.0037 (6) −0.0002 (6)
C11 0.0282 (9) 0.0381 (9) 0.0262 (8) 0.0056 (7) 0.0033 (6) 0.0018 (7)
C12 0.0316 (9) 0.0472 (10) 0.0266 (8) −0.0011 (7) 0.0030 (7) 0.0004 (7)
N2 0.0440 (9) 0.0359 (8) 0.0275 (7) −0.0008 (7) 0.0060 (6) 0.0002 (6)
N3 0.0289 (8) 0.0361 (8) 0.0435 (9) 0.0021 (7) −0.0018 (7) −0.0013 (7)
O1W 0.249 (4) 0.0447 (10) 0.0407 (10) 0.0464 (14) 0.0425 (14) 0.0092 (9)

Geometric parameters (Å, º)

C1—C2 1.395 (2) C8—N2 1.347 (2)
C1—C6 1.398 (2) C8—C9 1.353 (3)
C1—C7 1.515 (2) C8—H8 0.95
C2—C3 1.381 (2) C9—C10 1.418 (2)
C2—Cl1 1.7369 (16) C9—H9 0.95
C3—C4 1.381 (2) C10—N3 1.334 (2)
C3—H3 0.95 C10—C11 1.407 (2)
C4—C5 1.376 (2) C11—C12 1.358 (2)
C4—N1 1.471 (2) C11—H11 0.95
C5—C6 1.383 (2) C12—N2 1.345 (2)
C5—H5 0.95 C12—H12 0.95
C6—H6 0.95 N2—H2 0.93 (3)
C7—O2 1.248 (2) N3—H3A 0.94 (2)
C7—O1 1.248 (2) N3—H3B 0.84 (2)
N1—O3 1.219 (2) O1W—H1W 0.75 (3)
N1—O4 1.230 (2) O1W—H2W 0.78 (4)
C2—C1—C6 118.13 (15) O4—N1—C4 117.71 (15)
C2—C1—C7 122.05 (14) N2—C8—C9 121.43 (16)
C6—C1—C7 119.83 (14) N2—C8—H8 119.3
C3—C2—C1 121.91 (15) C9—C8—H8 119.3
C3—C2—Cl1 118.28 (12) C8—C9—C10 119.60 (17)
C1—C2—Cl1 119.80 (12) C8—C9—H9 120.2
C4—C3—C2 117.63 (15) C10—C9—H9 120.2
C4—C3—H3 121.2 N3—C10—C11 121.74 (16)
C2—C3—H3 121.2 N3—C10—C9 120.92 (16)
C5—C4—C3 122.84 (15) C11—C10—C9 117.33 (16)
C5—C4—N1 118.88 (15) C12—C11—C10 119.83 (16)
C3—C4—N1 118.27 (15) C12—C11—H11 120.1
C4—C5—C6 118.46 (15) C10—C11—H11 120.1
C4—C5—H5 120.8 N2—C12—C11 121.31 (17)
C6—C5—H5 120.8 N2—C12—H12 119.3
C5—C6—C1 121.02 (16) C11—C12—H12 119.3
C5—C6—H6 119.5 C12—N2—C8 120.46 (16)
C1—C6—H6 119.5 C12—N2—H2 118.9 (15)
O2—C7—O1 126.79 (16) C8—N2—H2 120.3 (15)
O2—C7—C1 116.89 (15) C10—N3—H3A 118.3 (13)
O1—C7—C1 116.28 (14) C10—N3—H3B 116.1 (15)
O3—N1—O4 124.01 (15) H3A—N3—H3B 126 (2)
O3—N1—C4 118.28 (15) H1W—O1W—H2W 117 (3)
C6—C1—C2—C3 0.4 (2) C2—C1—C7—O1 99.31 (18)
C7—C1—C2—C3 −179.64 (14) C6—C1—C7—O1 −80.7 (2)
C6—C1—C2—Cl1 179.99 (12) C5—C4—N1—O3 −179.69 (15)
C7—C1—C2—Cl1 0.0 (2) C3—C4—N1—O3 −0.8 (2)
C1—C2—C3—C4 −0.6 (2) C5—C4—N1—O4 −0.2 (2)
Cl1—C2—C3—C4 179.75 (12) C3—C4—N1—O4 178.68 (15)
C2—C3—C4—C5 0.1 (2) N2—C8—C9—C10 0.8 (3)
C2—C3—C4—N1 −178.79 (14) C8—C9—C10—N3 178.61 (16)
C3—C4—C5—C6 0.8 (3) C8—C9—C10—C11 −1.9 (2)
N1—C4—C5—C6 179.59 (14) N3—C10—C11—C12 −178.78 (16)
C4—C5—C6—C1 −1.0 (3) C9—C10—C11—C12 1.8 (2)
C2—C1—C6—C5 0.5 (2) C10—C11—C12—N2 −0.5 (2)
C7—C1—C6—C5 −179.52 (15) C11—C12—N2—C8 −0.8 (2)
C2—C1—C7—O2 −82.6 (2) C9—C8—N2—C12 0.6 (2)
C6—C1—C7—O2 97.40 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···O1Wi 0.93 (3) 1.72 (3) 2.641 (2) 170 (2)
N3—H3A···O1 0.94 (2) 1.99 (2) 2.926 (2) 171.1 (19)
N3—H3B···O2ii 0.84 (2) 2.16 (3) 2.982 (2) 165 (2)
O1W—H1W···O1iii 0.75 (3) 1.96 (3) 2.698 (2) 166 (3)
O1W—H2W···O2 0.78 (4) 1.99 (4) 2.729 (2) 158 (3)

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+2, −y+1, −z+1; (iii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FY2073).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 35, 1555–1573.
  2. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2004). SAINT-Plus and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Lemmerer, A., Esterhuysen, C. & Bernstein, J. (2010). J. Pharm. Sci. 99, 4054–4071. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812046077/fy2073sup1.cif

e-68-o3361-sup1.cif (20.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812046077/fy2073Isup2.hkl

e-68-o3361-Isup2.hkl (166.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812046077/fy2073Isup3.mol

Supplementary material file. DOI: 10.1107/S1600536812046077/fy2073Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES