Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 17;68(Pt 12):o3362. doi: 10.1107/S1600536812046442

N-(4-Amino­pyrimidin-5-yl)-4-methyl-N-(4-methyl­phenyl­sulfon­yl)benzene­sulfonamide

Abu Taher a,*, Vincent J Smith a
PMCID: PMC3588960  PMID: 23476196

Abstract

In the title compound, C18H18N4O4S2, the mean planes passing through the tosyl benzene rings form dihedral angles of 48.42 (9) and 15.1 (1)° with the amino­pyrimidine ring. In the crystal, mol­ecules associate via N—H⋯N and N—H⋯O hydrogen bonds, forming extended hydrogen-bonded sheets that lie parallel to the bc plane. The N—H⋯N hydrogen bonds propagate along the b-axis direction, while the N—H⋯O hydrogen bonds propagate along the c-axis direction.

Related literature  

For the synthesis of related sulfonamides, see: Schetty (1969); Taher & Smith (2012). For applications of ring-closing metathesis (RCM) on sulfonamide-protected allyl-containing substrates, see: Yadav et al. (2011); Panayides et al. (2007a ,b ).graphic file with name e-68-o3362-scheme1.jpg

Experimental  

Crystal data  

  • C18H18N4O4S2

  • M r = 418.48

  • Monoclinic, Inline graphic

  • a = 36.559 (9) Å

  • b = 6.9044 (18) Å

  • c = 15.524 (4) Å

  • β = 103.852 (3)°

  • V = 3804.6 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 103 K

  • 0.13 × 0.13 × 0.10 mm

Data collection  

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.962, T max = 0.969

  • 11288 measured reflections

  • 4459 independent reflections

  • 3156 reflections with I > 2σ(I)

  • R int = 0.041

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.116

  • S = 1.04

  • 4459 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.58 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001; Atwood & Barbour, 2003); software used to prepare material for publication: X-SEED.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812046442/hg5262sup1.cif

e-68-o3362-sup1.cif (21.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812046442/hg5262Isup2.hkl

e-68-o3362-Isup2.hkl (218.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812046442/hg5262Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1i 0.88 2.16 3.036 (3) 178
N3—H3B⋯N1ii 0.88 2.30 2.986 (3) 135

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

AT thanks the National Research Foundation (NRF), Pretoria, for providing an Innovation Fellowship and Professor W. A. L. van Otterlo for his research oversight. Stellenbosch University’s Science Faculty is also acknowledged for providing the laboratory space and addition financial research support.

supplementary crystallographic information

Comment

The para-toluene sulfonyl group (Ts) is frequently used as a protecting group for amines, particularly when monoalkylation of the amine is desired as the sulfonamide can then be cleaved in a subsequent step. The van Otterlo research group have successfully utilized the Ts group during their syntheses of annulated heterocycles using ring-closing metathesis (RCM) and isomerization strategies (see for example: Panayides et al., 2007a, 2007b; Yadav et al., 2011). In this present research the main aim was to synthesize pyrimidine-annulated heterocycles in which a 4,5-disulfonamide-protected 4,5-diaminopyrimidine was required. Surprisingly, instead of the desired 4,5-diTs compound the isomeric 5,5-disulfonamide-protected 4,5-diaminopyrimidine was obtained. It should be pointed out that according to literature it is uncommon for this type of ditosylation to occur on one amine in the presence of another amine group [see for instance Schetty (1969) and Taher et al. (2012)].

Experimental

To an ice-cooled solution of 4,5-diaminopyrimidine (0.100 g, 0.908 mmol) in pyridine (10 ml), was slowly added 4-methylbenzene-1-sulfonyl chloride (0.380 g, 2.00 mmol). The mixture was then stirred at 273.15 K for 2 h. After completion of the reaction, as monitored by TLC, ice-cooled water (10 ml) was added to the reaction mixture. A white solid precipitate was formed which was collected by filteration and washed with dilute HCl (15 ml, 1 M) and plenty of water, after which it was dried in an oven (373.15 K). The residue was recrystallized from MeOH/CH2Cl2 to afford the product N-(4-aminopyrimidin-5-yl)-4-methyl-N-tosylbenzenesulfonamide as a colourless crystalline material (0.357 g, 94%).

Refinement

H atoms were positioned geometrically [N—H = 0.88 Å; C—H = 0.95–0.98 Å; with Uiso(H) = 1.2–1.5Ueq(N,C)] and constrained to ride on their parent atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atomic numbering scheme - the displacement ellipsoids are shown at the 50 percent probability.

Fig. 2.

Fig. 2.

The hydrogen bonded sheet viewed along a and which runs parallel to the bc plane.

Fig. 3.

Fig. 3.

The hydrogen bond motif parallel to the bc plane.

Crystal data

C18H18N4O4S2 F(000) = 1744
Mr = 418.48 Dx = 1.461 Mg m3
Monoclinic, C2/c Melting point: 211 K
Hall symbol: -C 2yc Mo Kα radiation, λ = 0.71073 Å
a = 36.559 (9) Å Cell parameters from 2317 reflections
b = 6.9044 (18) Å θ = 2.3–27.0°
c = 15.524 (4) Å µ = 0.31 mm1
β = 103.852 (3)° T = 103 K
V = 3804.6 (17) Å3 Prismatic, colourless
Z = 8 0.13 × 0.13 × 0.10 mm

Data collection

Bruker SMART APEX CCD diffractometer 4459 independent reflections
Radiation source: fine-focus sealed tube, SMART APEX 3156 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.041
φ and ω scans θmax = 28.7°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −48→47
Tmin = 0.962, Tmax = 0.969 k = −5→8
11288 measured reflections l = −19→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.5062P] where P = (Fo2 + 2Fc2)/3
4459 reflections (Δ/σ)max < 0.001
254 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.58 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.089895 (16) 0.32905 (8) 0.29158 (4) 0.01860 (15)
S2 0.169329 (16) 0.42295 (8) 0.38027 (4) 0.01945 (15)
O1 0.10267 (4) 0.4335 (2) 0.22487 (10) 0.0232 (4)
O2 0.07469 (5) 0.1386 (2) 0.27300 (10) 0.0237 (4)
O3 0.19243 (4) 0.3605 (2) 0.46334 (10) 0.0249 (4)
O4 0.16212 (5) 0.6242 (2) 0.36298 (11) 0.0260 (4)
C4 0.12489 (6) 0.1827 (3) 0.44923 (14) 0.0165 (5)
C1 0.11889 (6) 0.2557 (3) 0.52950 (14) 0.0169 (5)
C12 0.18620 (6) 0.3219 (3) 0.29353 (14) 0.0186 (5)
N3 0.11439 (5) 0.4438 (3) 0.54561 (12) 0.0206 (4)
H3A 0.1104 0.4802 0.5969 0.025*
H3B 0.1155 0.5310 0.5049 0.025*
N4 0.12770 (5) 0.3096 (3) 0.37743 (11) 0.0176 (4)
N1 0.12518 (6) −0.1406 (3) 0.50446 (13) 0.0223 (4)
C5 0.05758 (6) 0.4700 (3) 0.33053 (14) 0.0180 (5)
N2 0.11685 (5) 0.1306 (3) 0.59516 (12) 0.0205 (4)
C2 0.11992 (7) −0.0559 (3) 0.57827 (15) 0.0225 (5)
H2 0.1182 −0.1417 0.6250 0.027*
C16 0.20041 (6) 0.3556 (4) 0.15198 (16) 0.0244 (5)
H16 0.2014 0.4328 0.1019 0.029*
C17 0.18700 (6) 0.4358 (4) 0.22029 (15) 0.0215 (5)
H17 0.1785 0.5662 0.2171 0.026*
C15 0.21246 (6) 0.1637 (4) 0.15541 (16) 0.0253 (5)
C3 0.12811 (6) −0.0140 (3) 0.44085 (15) 0.0201 (5)
H3 0.1326 −0.0632 0.3872 0.024*
C10 0.06049 (7) 0.6690 (4) 0.32818 (18) 0.0288 (6)
H10 0.0806 0.7286 0.3089 0.035*
C8 0.00387 (7) 0.6964 (4) 0.38297 (16) 0.0270 (6)
C14 0.21133 (7) 0.0535 (4) 0.22965 (17) 0.0269 (6)
H14 0.2195 −0.0774 0.2327 0.032*
C6 0.02854 (7) 0.3822 (4) 0.35961 (16) 0.0253 (5)
H6 0.0270 0.2450 0.3618 0.030*
C13 0.19845 (7) 0.1310 (4) 0.29931 (16) 0.0243 (5)
H13 0.1980 0.0550 0.3500 0.029*
C7 0.00199 (7) 0.4962 (4) 0.38528 (16) 0.0252 (5)
H7 −0.0180 0.4362 0.4049 0.030*
C9 0.03359 (8) 0.7801 (4) 0.3544 (2) 0.0400 (7)
H9 0.0354 0.9173 0.3530 0.048*
C18 0.22614 (8) 0.0793 (5) 0.07884 (18) 0.0386 (7)
H18C 0.2518 0.1247 0.0818 0.058*
H18A 0.2094 0.1210 0.0227 0.058*
H18B 0.2260 −0.0623 0.0824 0.058*
C11 −0.02630 (8) 0.8178 (4) 0.4063 (2) 0.0414 (7)
H11A −0.0205 0.9551 0.4011 0.062* 0.50
H11B −0.0276 0.7898 0.4674 0.062* 0.50
H11C −0.0506 0.7878 0.3658 0.062* 0.50
H11D −0.0453 0.7333 0.4218 0.062* 0.50
H11E −0.0382 0.8987 0.3554 0.062* 0.50
H11F −0.0152 0.9007 0.4571 0.062* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0218 (3) 0.0156 (3) 0.0187 (3) 0.0002 (2) 0.0055 (2) −0.0004 (2)
S2 0.0223 (3) 0.0153 (3) 0.0224 (3) −0.0022 (2) 0.0086 (2) −0.0016 (2)
O1 0.0266 (9) 0.0251 (9) 0.0195 (8) 0.0010 (7) 0.0088 (7) 0.0048 (7)
O2 0.0286 (9) 0.0155 (9) 0.0260 (9) −0.0020 (7) 0.0048 (7) −0.0040 (7)
O3 0.0234 (9) 0.0292 (10) 0.0221 (8) −0.0024 (7) 0.0051 (7) −0.0005 (7)
O4 0.0338 (10) 0.0132 (8) 0.0352 (9) −0.0024 (7) 0.0163 (8) −0.0023 (7)
C4 0.0196 (11) 0.0143 (11) 0.0168 (10) 0.0000 (9) 0.0067 (9) 0.0035 (9)
C1 0.0139 (10) 0.0157 (11) 0.0207 (11) −0.0004 (9) 0.0033 (9) 0.0005 (9)
C12 0.0182 (11) 0.0169 (12) 0.0210 (11) −0.0024 (9) 0.0054 (9) −0.0012 (9)
N3 0.0313 (11) 0.0127 (10) 0.0196 (9) 0.0014 (8) 0.0100 (8) −0.0006 (8)
N4 0.0199 (10) 0.0157 (10) 0.0182 (9) −0.0003 (8) 0.0064 (8) 0.0017 (8)
N1 0.0280 (11) 0.0151 (10) 0.0255 (10) 0.0034 (8) 0.0098 (9) 0.0028 (8)
C5 0.0164 (11) 0.0180 (12) 0.0188 (11) 0.0013 (9) 0.0028 (9) 0.0005 (9)
N2 0.0238 (10) 0.0153 (10) 0.0233 (10) 0.0012 (8) 0.0071 (8) 0.0026 (8)
C2 0.0265 (13) 0.0178 (12) 0.0242 (12) 0.0033 (10) 0.0081 (10) 0.0046 (10)
C16 0.0192 (12) 0.0326 (14) 0.0217 (12) −0.0015 (10) 0.0055 (10) 0.0009 (10)
C17 0.0194 (12) 0.0204 (12) 0.0253 (12) −0.0009 (10) 0.0067 (10) 0.0008 (10)
C15 0.0163 (11) 0.0343 (15) 0.0252 (12) 0.0001 (11) 0.0048 (10) −0.0075 (11)
C3 0.0234 (12) 0.0177 (12) 0.0209 (11) 0.0011 (10) 0.0084 (10) 0.0003 (9)
C10 0.0248 (13) 0.0190 (13) 0.0458 (15) 0.0006 (10) 0.0145 (12) 0.0026 (11)
C8 0.0241 (13) 0.0261 (14) 0.0316 (13) 0.0073 (11) 0.0082 (11) 0.0027 (11)
C14 0.0233 (13) 0.0216 (13) 0.0362 (14) 0.0042 (10) 0.0080 (11) −0.0040 (11)
C6 0.0304 (14) 0.0163 (12) 0.0315 (13) −0.0025 (10) 0.0120 (11) −0.0014 (10)
C13 0.0245 (13) 0.0225 (13) 0.0271 (12) 0.0037 (10) 0.0083 (11) 0.0023 (10)
C7 0.0214 (12) 0.0279 (14) 0.0285 (13) −0.0011 (10) 0.0102 (10) 0.0004 (11)
C9 0.0406 (17) 0.0145 (13) 0.072 (2) 0.0056 (12) 0.0268 (16) 0.0037 (13)
C18 0.0290 (15) 0.057 (2) 0.0314 (14) 0.0093 (14) 0.0101 (12) −0.0127 (14)
C11 0.0361 (16) 0.0362 (17) 0.0574 (19) 0.0130 (13) 0.0223 (15) 0.0070 (14)

Geometric parameters (Å, º)

S1—O1 1.4291 (16) C17—H17 0.9500
S1—O2 1.4299 (17) C15—C14 1.390 (3)
S1—N4 1.6800 (19) C15—C18 1.512 (3)
S1—C5 1.747 (2) C3—H3 0.9500
S2—O4 1.4275 (17) C10—C9 1.383 (3)
S2—O3 1.4284 (17) C10—H10 0.9500
S2—N4 1.703 (2) C8—C7 1.385 (3)
S2—C12 1.755 (2) C8—C9 1.393 (4)
C4—C3 1.372 (3) C8—C11 1.497 (3)
C4—C1 1.409 (3) C14—C13 1.386 (3)
C4—N4 1.441 (3) C14—H14 0.9500
C1—N3 1.340 (3) C6—C7 1.381 (3)
C1—N2 1.352 (3) C6—H6 0.9500
C12—C13 1.388 (3) C13—H13 0.9500
C12—C17 1.388 (3) C7—H7 0.9500
N3—H3A 0.8800 C9—H9 0.9500
N3—H3B 0.8800 C18—H18C 0.9800
N1—C2 1.340 (3) C18—H18A 0.9800
N1—C3 1.342 (3) C18—H18B 0.9800
C5—C10 1.379 (3) C11—H11A 0.9800
C5—C6 1.389 (3) C11—H11B 0.9800
N2—C2 1.324 (3) C11—H11C 0.9800
C2—H2 0.9500 C11—H11D 0.9800
C16—C17 1.386 (3) C11—H11E 0.9800
C16—C15 1.393 (3) C11—H11F 0.9800
C16—H16 0.9500
O1—S1—O2 119.77 (10) C5—C10—H10 120.7
O1—S1—N4 105.41 (9) C9—C10—H10 120.7
O2—S1—N4 107.02 (10) C7—C8—C9 118.0 (2)
O1—S1—C5 109.58 (10) C7—C8—C11 120.5 (2)
O2—S1—C5 108.65 (11) C9—C8—C11 121.4 (2)
N4—S1—C5 105.43 (10) C13—C14—C15 121.2 (2)
O4—S2—O3 120.40 (10) C13—C14—H14 119.4
O4—S2—N4 108.59 (10) C15—C14—H14 119.4
O3—S2—N4 102.50 (9) C7—C6—C5 119.3 (2)
O4—S2—C12 109.01 (11) C7—C6—H6 120.3
O3—S2—C12 109.41 (10) C5—C6—H6 120.3
N4—S2—C12 105.89 (10) C14—C13—C12 118.7 (2)
C3—C4—C1 118.2 (2) C14—C13—H13 120.6
C3—C4—N4 120.34 (19) C12—C13—H13 120.6
C1—C4—N4 121.43 (19) C6—C7—C8 121.3 (2)
N3—C1—N2 116.58 (19) C6—C7—H7 119.4
N3—C1—C4 124.3 (2) C8—C7—H7 119.4
N2—C1—C4 119.1 (2) C10—C9—C8 121.8 (2)
C13—C12—C17 121.4 (2) C10—C9—H9 119.1
C13—C12—S2 119.69 (18) C8—C9—H9 119.1
C17—C12—S2 118.92 (18) C15—C18—H18C 109.5
C1—N3—H3A 120.0 C15—C18—H18A 109.5
C1—N3—H3B 120.0 H18C—C18—H18A 109.5
H3A—N3—H3B 120.0 C15—C18—H18B 109.5
C4—N4—S1 117.70 (15) H18C—C18—H18B 109.5
C4—N4—S2 119.23 (15) H18A—C18—H18B 109.5
S1—N4—S2 122.98 (11) C8—C11—H11A 109.5
C2—N1—C3 113.4 (2) C8—C11—H11B 109.5
C10—C5—C6 120.9 (2) H11A—C11—H11B 109.5
C10—C5—S1 118.89 (18) C8—C11—H11C 109.5
C6—C5—S1 120.14 (18) H11A—C11—H11C 109.5
C2—N2—C1 116.72 (19) H11B—C11—H11C 109.5
N2—C2—N1 129.0 (2) C8—C11—H11D 109.5
N2—C2—H2 115.5 H11A—C11—H11D 141.1
N1—C2—H2 115.5 H11B—C11—H11D 56.3
C17—C16—C15 121.1 (2) H11C—C11—H11D 56.3
C17—C16—H16 119.4 C8—C11—H11E 109.5
C15—C16—H16 119.4 H11A—C11—H11E 56.3
C16—C17—C12 118.8 (2) H11B—C11—H11E 141.1
C16—C17—H17 120.6 H11C—C11—H11E 56.3
C12—C17—H17 120.6 H11D—C11—H11E 109.5
C14—C15—C16 118.7 (2) C8—C11—H11F 109.5
C14—C15—C18 121.4 (2) H11A—C11—H11F 56.3
C16—C15—C18 119.8 (2) H11B—C11—H11F 56.3
N1—C3—C4 123.4 (2) H11C—C11—H11F 141.1
N1—C3—H3 118.3 H11D—C11—H11F 109.5
C4—C3—H3 118.3 H11E—C11—H11F 109.5
C5—C10—C9 118.7 (2)
C3—C4—C1—N3 −178.4 (2) O2—S1—C5—C6 16.1 (2)
N4—C4—C1—N3 1.7 (3) N4—S1—C5—C6 −98.4 (2)
C3—C4—C1—N2 0.5 (3) N3—C1—N2—C2 177.6 (2)
N4—C4—C1—N2 −179.33 (19) C4—C1—N2—C2 −1.4 (3)
O4—S2—C12—C13 174.23 (18) C1—N2—C2—N1 0.6 (4)
O3—S2—C12—C13 40.7 (2) C3—N1—C2—N2 1.0 (4)
N4—S2—C12—C13 −69.1 (2) C15—C16—C17—C12 0.9 (3)
O4—S2—C12—C17 −5.7 (2) C13—C12—C17—C16 −0.1 (3)
O3—S2—C12—C17 −139.28 (18) S2—C12—C17—C16 179.89 (17)
N4—S2—C12—C17 110.92 (19) C17—C16—C15—C14 −0.9 (3)
C3—C4—N4—S1 78.1 (2) C17—C16—C15—C18 178.7 (2)
C1—C4—N4—S1 −102.1 (2) C2—N1—C3—C4 −1.9 (3)
C3—C4—N4—S2 −98.7 (2) C1—C4—C3—N1 1.2 (3)
C1—C4—N4—S2 81.1 (2) N4—C4—C3—N1 −178.9 (2)
O1—S1—N4—C4 −169.87 (15) C6—C5—C10—C9 −0.8 (4)
O2—S1—N4—C4 −41.33 (18) S1—C5—C10—C9 176.4 (2)
C5—S1—N4—C4 74.23 (18) C16—C15—C14—C13 0.1 (4)
O1—S1—N4—S2 6.80 (15) C18—C15—C14—C13 −179.4 (2)
O2—S1—N4—S2 135.34 (13) C10—C5—C6—C7 0.9 (4)
C5—S1—N4—S2 −109.10 (14) S1—C5—C6—C7 −176.23 (18)
O4—S2—N4—C4 −130.54 (16) C15—C14—C13—C12 0.6 (4)
O3—S2—N4—C4 −2.12 (18) C17—C12—C13—C14 −0.7 (3)
C12—S2—N4—C4 112.52 (17) S2—C12—C13—C14 179.38 (18)
O4—S2—N4—S1 52.84 (15) C5—C6—C7—C8 −0.3 (4)
O3—S2—N4—S1 −178.74 (12) C9—C8—C7—C6 −0.4 (4)
C12—S2—N4—S1 −64.10 (15) C11—C8—C7—C6 176.7 (2)
O1—S1—C5—C10 −28.6 (2) C5—C10—C9—C8 0.0 (4)
O2—S1—C5—C10 −161.14 (19) C7—C8—C9—C10 0.6 (4)
N4—S1—C5—C10 84.4 (2) C11—C8—C9—C10 −176.5 (3)
O1—S1—C5—C6 148.63 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3A···O1i 0.88 2.16 3.036 (3) 178
N3—H3B···N1ii 0.88 2.30 2.986 (3) 135

Symmetry codes: (i) x, −y+1, z+1/2; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5262).

References

  1. Atwood, J. L. & Barbour, L. J. (2003). Cryst. Growth. Des 3, 3–8.
  2. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Panayides, J.-L., Pathak, R., de Koning, C. B. & van Otterlo, W. A. L. (2007a). Eur. J. Org. Chem. pp. 4953–4961.
  5. Panayides, J.-L., Pathak, R., Panagiotopoulos, H., Davids, H., Fernandes, M. A., de Koning, C. B. & van Otterlo, W. A. L. (2007b). Tetrahedron, 63, 4737–4747.
  6. Schetty, G. (1969). Helv. Chim. Acta, 52, 1796–1802.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Taher, A. & Smith, V. J. (2012). Acta Cryst. E68, o1136. [DOI] [PMC free article] [PubMed]
  9. Yadav, D. B., Morgans, G. L., Aderibigbe, B. A., Madeley, L. G., Fernandes, M. A., Michael, J. P., de Koning, C. B. & van Otterlo, W. A. L. (2011). Tetrahedron, 67, 2991–2997.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812046442/hg5262sup1.cif

e-68-o3362-sup1.cif (21.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812046442/hg5262Isup2.hkl

e-68-o3362-Isup2.hkl (218.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812046442/hg5262Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES