Abstract
The fused five- and six-membered rings in the title molecule, C10H9N3O2, are essentially coplanar, the largest deviation from the mean plane being 0.012 (1) Å for the C atom linked to the nitro group. The fused-ring system makes a dihedral angle of 11.34 (6)° with the nitro group, leading to a syn-periplanar conformation. The plane through the atoms forming the allyl group is nearly perpendicular to the indazole fused-ring system, as indicated by the dihedral angle of 73.3 (5)°. In the crystal, each molecule is linked to its symmetry equivalent about the center of inversion by pairs of non-classical C—H⋯O hydrogen bonds, forming an extended tape motif parallel to the (-12-1) plane.
Related literature
For the pharmacological and biochemical properties of substituted indazoles, see: Saczewski et al. (2008 ▶); Jones et al. (2009 ▶); Bouissane et al. (2006 ▶). For compounds with similar structures, see: El Brahmi et al. (2009 ▶, 2011 ▶).
Experimental
Crystal data
C10H9N3O2
M r = 203.20
Triclinic,
a = 4.3630 (16) Å
b = 8.3245 (7) Å
c = 13.541 (5) Å
α = 95.647 (2)°
β = 98.46 (2)°
γ = 97.770 (2)°
V = 478.5 (3) Å3
Z = 2
Mo Kα radiation
μ = 0.10 mm−1
T = 296 K
0.38 × 0.29 × 0.27 mm
Data collection
Bruker Kappa APEXII Quazar area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2009 ▶) T min = 0.957, T max = 0.997
8258 measured reflections
2109 independent reflections
1675 reflections with I > 2σ(I)
R int = 0.021
Refinement
R[F 2 > 2σ(F 2)] = 0.034
wR(F 2) = 0.100
S = 1.06
2109 reflections
136 parameters
H-atom parameters constrained
Δρmax = 0.18 e Å−3
Δρmin = −0.20 e Å−3
Data collection: APEX2 (Bruker, 2009 ▶); cell refinement: SAINT (Bruker, 2009 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012 ▶) and Mercury (Macrae et al. 2008 ▶); software used to prepare material for publication: PLATON (Spek, 2009 ▶) and publCIF (Westrip, 2010 ▶).
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812046478/pk2452sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812046478/pk2452Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536812046478/pk2452Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C6—H6⋯O1i | 0.93 | 2.51 | 3.3973 (17) | 160 |
| C8—H8A⋯O1i | 0.97 | 2.53 | 3.4475 (19) | 157 |
| C2—H2⋯O2ii | 0.93 | 2.66 | 3.3911 (17) | 136 |
Symmetry codes: (i)
; (ii)
.
supplementary crystallographic information
Comment
Indazole derivatives constitute an exciting heterocyclic family because of their important biological activities. Thus substituted indazoles are generally found to be of pharmaceutical interest in a variety of therapeutic areas (Saczewski et al., 2008, Jones et al., 2009) and with significant cytotoxicities against human (colon and prostate) and murine (leukemia) cell lines (Bouissane et al., 2006).
The plot of the structure of the title compound shows the indazole ring system is linked to a C3H5 chain and to a nitro group (Fig.1). The fused-ring system is essentially planar, with a maximum deviation of 0.012 (1) Å for C1. The allyl group is nearly perpendicular to indazole plane as indicated by the torsion angle of C9 C8 N2 N3 = 88.35 (18)°. Moreover, the dihedral angle of 11.34 (6)° between the fused ring system and the nitro group lead to a synperiplanar conformation. The structure of the 1-Allyl-6-nitro-indazole is similar to that reported for the following molecules: 1-allyl-3-chloro-6-nitro-1H-indazole and 3-bromo-6-nitro-1-(prop-2-ynyl)-1H-indazole (El Brahmi et al. 2009, 2011).
In the crystal, each molecule and its symmetry equivalent through the inversion center are linked by C6–H6···O1, C8–H8B···O1 and C2–H2···O2, non-classical hydrogen bonds, which results in an extended tape motif parallel to the plane (-1 2 -1) as shown in Fig.2.
Experimental
6-nitroindazole (5 mmol) and allyl bromide (10 mmol) were reacted in THF (40 ml) in the presence of potassium carbonate (10 mmol) and tetra-n-butylammonium bromide (0.5 mmol). The mixture was stirred for 24 h, filtered, and the THF removed under vacuum. The product was separated by chromatography on silica gel with a hexane:ethyl acetate (9:1) solvent system. The compound was obtained as yellow crystals in 68% yield.
Refinement
H atoms were located in a difference map and treated as riding with N—H = 0.86 Å, C—H = 0.93 Å (aromatic), and C—H = 0.97 Å (methylene). with Uiso(H) = 1.2 Ueq (aromatic, methylene).
Figures
Fig. 1.
Molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles.
Fig. 2.
The title molecule and its symmetry equivalent through the inversion center linked by hydrogen bonds and building extended tape motifs parallel to the plane (-1 2 -1).
Crystal data
| C10H9N3O2 | Z = 2 |
| Mr = 203.20 | F(000) = 212 |
| Triclinic, P1 | Dx = 1.410 Mg m−3 |
| Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
| a = 4.3630 (16) Å | Cell parameters from 2109 reflections |
| b = 8.3245 (7) Å | θ = 3.7–27.1° |
| c = 13.541 (5) Å | µ = 0.10 mm−1 |
| α = 95.647 (2)° | T = 296 K |
| β = 98.46 (2)° | Block, yellow |
| γ = 97.770 (2)° | 0.38 × 0.29 × 0.27 mm |
| V = 478.5 (3) Å3 |
Data collection
| Bruker Kappa APEXII Quazar area-detector diffractometer | 2109 independent reflections |
| Radiation source: microfocus sealed tube | 1675 reflections with I > 2σ(I) |
| Multilayer optics monochromator | Rint = 0.021 |
| φ and ω scans | θmax = 27.1°, θmin = 3.7° |
| Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −5→5 |
| Tmin = 0.957, Tmax = 0.997 | k = −10→10 |
| 8258 measured reflections | l = −17→17 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: difference Fourier map |
| wR(F2) = 0.100 | H-atom parameters constrained |
| S = 1.06 | w = 1/[σ2(Fo2) + (0.0593P)2 + 0.0394P] where P = (Fo2 + 2Fc2)/3 |
| 2109 reflections | (Δ/σ)max < 0.001 |
| 136 parameters | Δρmax = 0.18 e Å−3 |
| 0 restraints | Δρmin = −0.20 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.5250 (3) | 0.28071 (13) | 0.07294 (8) | 0.0285 (3) | |
| C2 | 0.7333 (3) | 0.42576 (14) | 0.10756 (9) | 0.0336 (3) | |
| H2 | 0.8493 | 0.4767 | 0.0639 | 0.040* | |
| C3 | 0.7649 (3) | 0.49196 (14) | 0.20582 (9) | 0.0347 (3) | |
| H3 | 0.9001 | 0.5887 | 0.2297 | 0.042* | |
| C4 | 0.5890 (3) | 0.41073 (13) | 0.26971 (9) | 0.0296 (3) | |
| C5 | 0.3813 (3) | 0.26597 (13) | 0.23161 (8) | 0.0269 (3) | |
| C6 | 0.3433 (3) | 0.19722 (13) | 0.13128 (8) | 0.0279 (3) | |
| H6 | 0.2053 | 0.1020 | 0.1061 | 0.034* | |
| C7 | 0.5573 (3) | 0.43449 (15) | 0.37259 (9) | 0.0357 (3) | |
| H7 | 0.6669 | 0.5214 | 0.4182 | 0.043* | |
| C8 | 0.0238 (3) | 0.06785 (15) | 0.31003 (9) | 0.0337 (3) | |
| H8A | −0.1083 | 0.0416 | 0.2447 | 0.040* | |
| H8B | −0.1104 | 0.0882 | 0.3595 | 0.040* | |
| C9 | 0.1822 (3) | −0.07536 (15) | 0.33350 (11) | 0.0430 (3) | |
| H9 | 0.3288 | −0.1040 | 0.2942 | 0.052* | |
| C10 | 0.1274 (4) | −0.16305 (18) | 0.40592 (12) | 0.0599 (4) | |
| H10A | 0.2369 | −0.2555 | 0.4167 | 0.072* | |
| H10B | −0.0296 | −0.1344 | 0.4488 | 0.072* | |
| N1 | 0.5029 (2) | 0.21201 (12) | −0.03272 (7) | 0.0335 (3) | |
| N2 | 0.2434 (2) | 0.21521 (11) | 0.30948 (7) | 0.0306 (2) | |
| N3 | 0.3528 (3) | 0.31791 (12) | 0.39570 (7) | 0.0360 (3) | |
| O1 | 0.2915 (2) | 0.09935 (12) | −0.06728 (7) | 0.0468 (3) | |
| O2 | 0.6971 (3) | 0.26879 (12) | −0.08121 (7) | 0.0515 (3) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.0332 (6) | 0.0299 (5) | 0.0236 (6) | 0.0101 (5) | 0.0050 (5) | 0.0012 (4) |
| C2 | 0.0385 (7) | 0.0296 (6) | 0.0340 (6) | 0.0042 (5) | 0.0099 (5) | 0.0051 (5) |
| C3 | 0.0399 (7) | 0.0263 (5) | 0.0361 (7) | 0.0005 (5) | 0.0068 (5) | 0.0003 (5) |
| C4 | 0.0342 (6) | 0.0265 (5) | 0.0271 (6) | 0.0064 (5) | 0.0028 (5) | −0.0015 (4) |
| C5 | 0.0279 (5) | 0.0280 (5) | 0.0255 (6) | 0.0073 (4) | 0.0036 (4) | 0.0031 (4) |
| C6 | 0.0290 (6) | 0.0276 (5) | 0.0257 (6) | 0.0046 (4) | 0.0018 (4) | −0.0008 (4) |
| C7 | 0.0429 (7) | 0.0339 (6) | 0.0266 (6) | 0.0020 (5) | 0.0029 (5) | −0.0044 (5) |
| C8 | 0.0300 (6) | 0.0421 (6) | 0.0261 (6) | −0.0028 (5) | 0.0041 (5) | 0.0023 (5) |
| C9 | 0.0370 (7) | 0.0356 (7) | 0.0521 (8) | −0.0037 (5) | 0.0074 (6) | −0.0032 (6) |
| C10 | 0.0817 (12) | 0.0388 (7) | 0.0518 (9) | 0.0053 (8) | −0.0079 (8) | 0.0024 (7) |
| N1 | 0.0409 (6) | 0.0351 (5) | 0.0263 (5) | 0.0117 (4) | 0.0070 (4) | 0.0021 (4) |
| N2 | 0.0343 (5) | 0.0336 (5) | 0.0223 (5) | 0.0018 (4) | 0.0048 (4) | 0.0005 (4) |
| N3 | 0.0426 (6) | 0.0387 (6) | 0.0240 (5) | 0.0034 (5) | 0.0036 (4) | −0.0031 (4) |
| O1 | 0.0512 (6) | 0.0529 (6) | 0.0297 (5) | −0.0007 (5) | 0.0020 (4) | −0.0088 (4) |
| O2 | 0.0659 (7) | 0.0549 (6) | 0.0364 (5) | 0.0031 (5) | 0.0255 (5) | 0.0017 (4) |
Geometric parameters (Å, º)
| C1—C6 | 1.3706 (16) | C7—H7 | 0.9300 |
| C1—C2 | 1.4036 (17) | C8—N2 | 1.4522 (15) |
| C1—N1 | 1.4720 (15) | C8—C9 | 1.4942 (18) |
| C2—C3 | 1.3691 (17) | C8—H8A | 0.9700 |
| C2—H2 | 0.9300 | C8—H8B | 0.9700 |
| C3—C4 | 1.4016 (16) | C9—C10 | 1.309 (2) |
| C3—H3 | 0.9300 | C9—H9 | 0.9300 |
| C4—C5 | 1.4087 (15) | C10—H10A | 0.9711 |
| C4—C7 | 1.4174 (17) | C10—H10B | 0.9983 |
| C5—N2 | 1.3631 (14) | N1—O2 | 1.2203 (13) |
| C5—C6 | 1.3985 (16) | N1—O1 | 1.2256 (14) |
| C6—H6 | 0.9300 | N2—N3 | 1.3605 (14) |
| C7—N3 | 1.3204 (16) | ||
| C6—C1—C2 | 124.41 (11) | C4—C7—H7 | 124.2 |
| C6—C1—N1 | 117.64 (10) | N2—C8—C9 | 112.95 (10) |
| C2—C1—N1 | 117.95 (10) | N2—C8—H8A | 109.0 |
| C3—C2—C1 | 119.75 (11) | C9—C8—H8A | 109.0 |
| C3—C2—H2 | 120.1 | N2—C8—H8B | 109.0 |
| C1—C2—H2 | 120.1 | C9—C8—H8B | 109.0 |
| C2—C3—C4 | 118.53 (11) | H8A—C8—H8B | 107.8 |
| C2—C3—H3 | 120.7 | C10—C9—C8 | 124.06 (14) |
| C4—C3—H3 | 120.7 | C10—C9—H9 | 118.0 |
| C3—C4—C5 | 119.81 (11) | C8—C9—H9 | 118.0 |
| C3—C4—C7 | 136.30 (11) | C9—C10—H10A | 119.9 |
| C5—C4—C7 | 103.89 (10) | C9—C10—H10B | 119.2 |
| N2—C5—C6 | 130.53 (10) | H10A—C10—H10B | 120.9 |
| N2—C5—C4 | 106.94 (10) | O2—N1—O1 | 123.28 (10) |
| C6—C5—C4 | 122.53 (10) | O2—N1—C1 | 118.53 (10) |
| C1—C6—C5 | 114.96 (10) | O1—N1—C1 | 118.18 (10) |
| C1—C6—H6 | 122.5 | N3—N2—C5 | 111.12 (10) |
| C5—C6—H6 | 122.5 | N3—N2—C8 | 120.52 (9) |
| N3—C7—C4 | 111.61 (11) | C5—N2—C8 | 128.23 (9) |
| N3—C7—H7 | 124.2 | C7—N3—N2 | 106.44 (10) |
| C6—C1—C2—C3 | 0.27 (18) | N2—C8—C9—C10 | 125.37 (14) |
| N1—C1—C2—C3 | −178.80 (10) | C6—C1—N1—O2 | −168.29 (10) |
| C1—C2—C3—C4 | 0.77 (17) | C2—C1—N1—O2 | 10.84 (16) |
| C2—C3—C4—C5 | −1.17 (16) | C6—C1—N1—O1 | 11.05 (16) |
| C2—C3—C4—C7 | 178.55 (13) | C2—C1—N1—O1 | −169.83 (10) |
| C3—C4—C5—N2 | −179.75 (10) | C6—C5—N2—N3 | 178.95 (11) |
| C7—C4—C5—N2 | 0.45 (12) | C4—C5—N2—N3 | −0.67 (12) |
| C3—C4—C5—C6 | 0.59 (16) | C6—C5—N2—C8 | 3.07 (19) |
| C7—C4—C5—C6 | −179.21 (10) | C4—C5—N2—C8 | −176.55 (11) |
| C2—C1—C6—C5 | −0.84 (16) | C9—C8—N2—N3 | −88.19 (13) |
| N1—C1—C6—C5 | 178.23 (9) | C9—C8—N2—C5 | 87.34 (14) |
| N2—C5—C6—C1 | −179.17 (10) | C4—C7—N3—N2 | −0.31 (14) |
| C4—C5—C6—C1 | 0.40 (15) | C5—N2—N3—C7 | 0.62 (13) |
| C3—C4—C7—N3 | −179.84 (13) | C8—N2—N3—C7 | 176.85 (10) |
| C5—C4—C7—N3 | −0.09 (13) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C6—H6···O1i | 0.93 | 2.51 | 3.3973 (17) | 160 |
| C8—H8A···O1i | 0.97 | 2.53 | 3.4475 (19) | 157 |
| C2—H2···O2ii | 0.93 | 2.66 | 3.3911 (17) | 136 |
Symmetry codes: (i) −x, −y, −z; (ii) −x+2, −y+1, −z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2452).
References
- Bouissane, L., El Kazzouli, S., Léonce, S., Pfeiffer, B., Rakib, E. M., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078–1088. [DOI] [PubMed]
- Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- El Brahmi, N., Benchidmi, M., Essassi, E. M., Ladeira, S. & Ng, S. W. (2011). Acta Cryst. E67, o3260. [DOI] [PMC free article] [PubMed]
- El Brahmi, N., Mohamed, B., Essassi, E. M., Zouihri, H. & Ng, S. W. (2009). Acta Cryst. E65, o2320. [DOI] [PMC free article] [PubMed]
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Jones, L. H., Allan, G., Barba, O., Burt, C., Corbau, R., Dupont, T., Knöchel, T., Irving, S., Middleton, D. S., Mowbray, C. E., Perros, M., Ringrose, H., Swain, N. A., Webster, R., Westby, M. & Phillips, C. (2009). J. Med. Chem. 52, 1219–1223. [DOI] [PubMed]
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Saczewski, F., Kornicka, A., Rybczyn’ska, A., Hudson, A. L., Miao, S. S., Gdaniec, M., Boblewski, K. & Lehmann, A. (2008). J. Med. Chem. 51, 3599–3608. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812046478/pk2452sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812046478/pk2452Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536812046478/pk2452Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


