Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 17;68(Pt 12):o3369. doi: 10.1107/S1600536812045904

1-(10H-phenothia­zin-10-yl)ethanone

Eri Tokunaga a, Tsunehisa Okuno a,*
PMCID: PMC3588965  PMID: 23476201

Abstract

In the title compound, C14H11NOS, the phenothia­zine unit has a butterfly conformation and the central six-membered ring has a boat form. The fold angle between the benzene rings is 46.39 (7)°, which is larger than found in similar compounds, probably as a result of steric repulsion between the phenothia­zine fragment and the acetyl group.

Related literature  

For the structures of related N-alkyl­phenothia­zine derivatives, see: Chu & Van der Helm (1974, 1975) and of related N-acetyl­phenothia­zine derivatives, see: Meester & Chu (1986); Wang et al. (2009); Siddegowda et al. (2011).graphic file with name e-68-o3369-scheme1.jpg

Experimental  

Crystal data  

  • C14H11NOS

  • M r = 241.31

  • Monoclinic, Inline graphic

  • a = 21.435 (6) Å

  • b = 8.897 (3) Å

  • c = 12.738 (4) Å

  • β = 111.753 (3)°

  • V = 2256.2 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 93 K

  • 0.17 × 0.10 × 0.10 mm

Data collection  

  • Rigaku Saturn724+ diffractometer

  • Absorption correction: numerical (NUMABS; Rigaku, 1999) T min = 0.969, T max = 0.974

  • 9030 measured reflections

  • 2584 independent reflections

  • 2337 reflections with F 2 > 2σ(F 2)

  • R int = 0.025

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.081

  • S = 1.03

  • 2584 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812045904/fy2074sup1.cif

e-68-o3369-sup1.cif (22.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812045904/fy2074Isup2.hkl

e-68-o3369-Isup2.hkl (127KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812045904/fy2074Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Research for Promoting Technological Seeds from the Japan Science and Technology Agency (JST).

supplementary crystallographic information

Comment

Phenothiazine derivatives have been interesting from the viewpoint of formation of charge-transfer complexes and biochemical reactivities. The title compound is an N-acetylated phenothiazine in which the orientation of the acetyl group is thought to determine the molecular structure and furthermore to affect the oxidation reactivity at 5-position.

The phenothiazine moiety has a butterfly structure, and the central six-membered ring has a boat form. The dihedral angle between the C1—C6 and C7—C12 planes is 133.61 (7)°, which is smaller than a usual angle (Chu & Van der Helm, 1974, 1975). The five atoms of N1, C1, C12, C13 and O1 lie on almost the same plane (the N1/C1/C12/Cl3/O1 plane: r.m.s. deviation = 0.0317 Å), showing efficient conjugation between the lone pair of N1 and the carbonyl group. The proximity of C11 and C14 is indicated by the intramolecular contact distance of 3.130 (3) Å, although little effective contact is observed around O1. The relatively small dihedral angle between the benzene rings is thought to reduce the steric repulsion between the phenothiazine moiety and the acetyl group. There are three reports concerning 1-(10H-phenothiazin-10-yl)ethanone derivatives (Meester & Chu, 1986; Wang et al., 2009; Siddegowda et al., 2011). Similar steric effects can also be recognized in these cases.

Experimental

Single crystals with sufficient quality for X-ray crystallographical analysis were prepared by recrystallization from an ethanol solution.

Refinement

The C-bound H atoms were placed at ideal positions and were refined as riding on their parent C atoms. Uiso(H) values of the H atoms were set at 1.2Ueq(parent atom).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound with atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres.

Crystal data

C14H11NOS F(000) = 1008.00
Mr = 241.31 Dx = 1.421 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71075 Å
Hall symbol: -C 2yc Cell parameters from 3415 reflections
a = 21.435 (6) Å θ = 2.1–31.1°
b = 8.897 (3) Å µ = 0.27 mm1
c = 12.738 (4) Å T = 93 K
β = 111.753 (3)° Block, colorless
V = 2256.2 (11) Å3 0.17 × 0.10 × 0.10 mm
Z = 8

Data collection

Rigaku Saturn724+ diffractometer 2337 reflections with F2 > 2σ(F2)
Detector resolution: 7.111 pixels mm-1 Rint = 0.025
ω scans θmax = 27.5°
Absorption correction: numerical (NUMABS; Rigaku, 1999) h = −27→27
Tmin = 0.969, Tmax = 0.974 k = −11→8
9030 measured reflections l = −16→16
2584 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.042P)2 + 2.3718P] where P = (Fo2 + 2Fc2)/3
2584 reflections (Δ/σ)max < 0.001
154 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.24 e Å3
Primary atom site location: structure-invariant direct methods

Special details

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.414831 (16) 0.27277 (3) 0.08674 (2) 0.01289 (10)
O1 0.39200 (5) −0.21234 (10) 0.18741 (8) 0.0181 (2)
N1 0.37281 (5) 0.03491 (12) 0.20689 (9) 0.0120 (3)
C1 0.32864 (6) 0.04797 (14) 0.09052 (10) 0.0118 (3)
C2 0.27278 (7) −0.04399 (14) 0.04325 (11) 0.0149 (3)
C3 0.23329 (7) −0.02967 (15) −0.07063 (11) 0.0169 (3)
C4 0.24838 (7) 0.07854 (15) −0.13668 (11) 0.0163 (3)
C5 0.30261 (7) 0.17472 (15) −0.08875 (11) 0.0147 (3)
C6 0.34325 (6) 0.15792 (14) 0.02484 (10) 0.0121 (3)
C7 0.41033 (6) 0.29392 (14) 0.22130 (10) 0.0113 (3)
C8 0.42569 (6) 0.43164 (14) 0.27746 (11) 0.0134 (3)
C9 0.42106 (6) 0.44609 (15) 0.38294 (11) 0.0156 (3)
C10 0.39899 (7) 0.32640 (15) 0.43056 (11) 0.0165 (3)
C11 0.38202 (7) 0.19044 (15) 0.37316 (11) 0.0147 (3)
C12 0.38932 (6) 0.17307 (14) 0.26952 (10) 0.0116 (3)
C13 0.40672 (6) −0.09848 (14) 0.24523 (11) 0.0132 (3)
C14 0.46316 (7) −0.09615 (15) 0.35876 (11) 0.0164 (3)
H2 0.2617 −0.1161 0.0885 0.0179*
H3 0.1957 −0.0941 −0.1038 0.0202*
H4 0.2215 0.0866 −0.2148 0.0195*
H5 0.3119 0.2512 −0.1330 0.0177*
H8 0.4392 0.5146 0.2439 0.0161*
H9 0.4330 0.5384 0.4229 0.0187*
H10 0.3955 0.3376 0.5024 0.0198*
H11 0.3655 0.1098 0.4044 0.0176*
H14A 0.4889 −0.0030 0.3668 0.0197*
H14B 0.4927 −0.1826 0.3651 0.0197*
H14C 0.4447 −0.1013 0.4185 0.0197*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01464 (17) 0.01445 (17) 0.01035 (15) −0.00323 (11) 0.00552 (12) −0.00079 (11)
O1 0.0196 (5) 0.0115 (5) 0.0205 (5) −0.0003 (4) 0.0043 (4) −0.0018 (4)
N1 0.0141 (6) 0.0110 (5) 0.0098 (5) −0.0003 (4) 0.0031 (5) 0.0002 (4)
C1 0.0123 (6) 0.0116 (6) 0.0110 (6) 0.0020 (5) 0.0038 (5) −0.0008 (5)
C2 0.0141 (6) 0.0130 (6) 0.0176 (7) −0.0003 (5) 0.0060 (5) −0.0007 (5)
C3 0.0119 (7) 0.0161 (6) 0.0197 (7) 0.0003 (5) 0.0025 (6) −0.0040 (5)
C4 0.0129 (6) 0.0198 (7) 0.0129 (6) 0.0048 (5) 0.0010 (5) −0.0031 (5)
C5 0.0164 (7) 0.0147 (6) 0.0133 (6) 0.0035 (5) 0.0059 (5) 0.0009 (5)
C6 0.0113 (6) 0.0116 (6) 0.0132 (6) 0.0005 (5) 0.0045 (5) −0.0022 (5)
C7 0.0098 (6) 0.0136 (6) 0.0101 (6) 0.0019 (5) 0.0034 (5) −0.0005 (5)
C8 0.0108 (6) 0.0128 (6) 0.0157 (6) 0.0001 (5) 0.0039 (5) −0.0003 (5)
C9 0.0135 (7) 0.0155 (6) 0.0156 (6) 0.0013 (5) 0.0027 (5) −0.0052 (5)
C10 0.0163 (7) 0.0209 (7) 0.0122 (6) 0.0033 (6) 0.0052 (5) −0.0019 (5)
C11 0.0143 (6) 0.0174 (7) 0.0131 (6) 0.0007 (5) 0.0058 (5) 0.0021 (5)
C12 0.0103 (6) 0.0116 (6) 0.0116 (6) 0.0008 (5) 0.0026 (5) −0.0008 (5)
C13 0.0138 (6) 0.0128 (6) 0.0146 (6) −0.0008 (5) 0.0070 (5) 0.0022 (5)
C14 0.0171 (7) 0.0163 (6) 0.0150 (7) 0.0014 (5) 0.0050 (6) 0.0020 (5)

Geometric parameters (Å, º)

S1—C6 1.7673 (13) C9—C10 1.392 (2)
S1—C7 1.7621 (15) C10—C11 1.3903 (19)
O1—C13 1.2231 (16) C11—C12 1.394 (3)
N1—C1 1.4376 (15) C13—C14 1.5028 (17)
N1—C12 1.4365 (17) C2—H2 0.950
N1—C13 1.3828 (16) C3—H3 0.950
C1—C2 1.3897 (18) C4—H4 0.950
C1—C6 1.396 (2) C5—H5 0.950
C2—C3 1.3881 (18) C8—H8 0.950
C3—C4 1.393 (3) C9—H9 0.950
C4—C5 1.3893 (19) C10—H10 0.950
C5—C6 1.3930 (17) C11—H11 0.950
C7—C8 1.3953 (18) C14—H14A 0.980
C7—C12 1.393 (2) C14—H14B 0.980
C8—C9 1.389 (3) C14—H14C 0.980
S1···N1 2.9418 (14) C11···H14Bxiii 3.4202
O1···C1 2.7367 (16) C12···H4v 3.0777
O1···C2 2.9441 (16) C13···H3ii 3.5525
O1···C12 3.5917 (18) C13···H5vii 3.2746
C1···C4 2.7782 (18) C13···H8iii 3.5131
C1···C7 2.9099 (17) C13···H14Ai 3.1820
C1···C11 3.581 (2) C13···H14Bi 3.0711
C2···C5 2.796 (3) C14···H5vii 3.5612
C2···C12 3.5972 (18) C14···H9iii 3.4709
C2···C13 3.1019 (17) C14···H10xiii 3.5985
C3···C6 2.7741 (19) C14···H14Ai 3.4899
C6···C12 2.903 (2) C14···H14Axiii 3.3758
C6···C13 3.4792 (19) C14···H14Bi 3.4086
C7···C10 2.780 (3) C14···H14Cxiii 3.2995
C7···C13 3.508 (2) H2···C2ii 3.4044
C8···C11 2.795 (2) H2···C3ii 3.1645
C9···C12 2.7789 (19) H2···C10ix 3.4004
C11···C13 3.191 (2) H2···H2ii 3.1902
C11···C14 3.130 (3) H2···H3ii 2.7183
C12···C14 2.8638 (19) H2···H4vii 2.9472
S1···C8i 3.5062 (15) H2···H5vii 3.5148
O1···C3ii 3.4254 (18) H2···H10ix 3.1583
O1···C8iii 3.3551 (17) H3···O1ii 2.4806
O1···C10iv 3.481 (2) H3···C2ii 3.3218
O1···C14i 3.522 (3) H3···C7v 3.4668
C3···O1ii 3.4254 (18) H3···C8v 3.0805
C3···C8v 3.5581 (18) H3···C10ix 3.5790
C4···C7v 3.362 (2) H3···C13ii 3.5525
C4···C8v 3.491 (2) H3···H2ii 2.7183
C4···C12v 3.5717 (19) H3···H5xiv 3.5725
C7···C4v 3.362 (2) H3···H8v 2.8676
C8···S1i 3.5062 (15) H3···H10ix 2.7814
C8···O1vi 3.3551 (17) H4···C7v 2.9911
C8···C3v 3.5581 (18) H4···C8v 2.9579
C8···C4v 3.491 (2) H4···C9v 3.0259
C8···C8i 3.506 (3) H4···C10v 3.0919
C10···O1vii 3.481 (2) H4···C11v 3.0998
C12···C4v 3.5717 (19) H4···C12v 3.0777
C13···C14i 3.503 (3) H4···H2iv 2.9472
C14···O1i 3.522 (3) H4···H5xiv 3.4855
C14···C13i 3.503 (3) H4···H8v 3.4440
S1···H5 2.8571 H4···H9v 3.5674
S1···H8 2.8527 H4···H11iv 3.3789
O1···H2 2.7411 H5···O1iv 3.3489
O1···H14A 3.0798 H5···C2v 3.5950
O1···H14B 2.4958 H5···C9viii 3.5246
O1···H14C 2.9067 H5···C13iv 3.2746
N1···H2 2.6627 H5···C14iv 3.5612
N1···H11 2.6624 H5···H2iv 3.5148
N1···H14A 2.5881 H5···H3xv 3.5725
N1···H14B 3.2510 H5···H4xv 3.4855
N1···H14C 2.8334 H5···H9viii 3.0641
C1···H3 3.2575 H5···H11iv 3.3848
C1···H5 3.2778 H5···H14Civ 2.9882
C2···H4 3.2687 H8···O1vi 2.6273
C3···H5 3.2715 H8···C3v 3.5369
C4···H2 3.2716 H8···C8i 3.0975
C5···H3 3.2680 H8···C13vi 3.5131
C6···H2 3.2727 H8···H3v 2.8676
C6···H4 3.2601 H8···H4v 3.4440
C7···H9 3.2612 H8···H8i 2.5542
C7···H11 3.2720 H8···H10viii 3.1524
C7···H14A 3.3070 H8···H14Bvi 3.1051
C8···H10 3.2705 H8···H14Bxvi 3.5810
C9···H11 3.2690 H9···S1x 2.8168
C10···H8 3.2734 H9···O1vi 3.5684
C11···H9 3.2663 H9···C9xi 3.1910
C11···H14A 2.8911 H9···C10xi 3.5933
C11···H14C 2.8813 H9···C14vi 3.4709
C12···H8 3.2774 H9···H4v 3.5674
C12···H10 3.2657 H9···H5x 3.0641
C12···H14A 2.5664 H9···H9xi 2.8955
C12···H14C 3.0495 H9···H14Bvi 3.0059
C13···H2 3.0122 H9···H14Cvi 3.2172
C13···H11 3.1065 H10···O1vii 2.6337
C14···H11 2.9960 H10···C2xii 3.5929
H2···H3 2.3388 H10···C3xii 3.3992
H3···H4 2.3384 H10···C14xiii 3.5985
H4···H5 2.3425 H10···H2xii 3.1583
H8···H9 2.3410 H10···H3xii 2.7814
H9···H10 2.3377 H10···H8x 3.1524
H10···H11 2.3422 H10···H14Bxiii 2.7382
H11···H14A 3.0286 H11···O1vii 3.5544
H11···H14C 2.4928 H11···C1vii 3.0992
S1···H9viii 2.8168 H11···C2vii 3.1669
S1···H14Ai 3.1180 H11···C3vii 3.0516
S1···H14Civ 2.8892 H11···C4vii 2.9005
O1···H3ii 2.4806 H11···C5vii 2.8846
O1···H5vii 3.3489 H11···C6vii 2.9661
O1···H8iii 2.6273 H11···H4vii 3.3789
O1···H9iii 3.5684 H11···H5vii 3.3848
O1···H10iv 2.6337 H11···H14Axiii 3.5203
O1···H11iv 3.5544 H11···H14Bxiii 3.4153
O1···H14Ai 3.4300 H14A···S1i 3.1180
O1···H14Bi 2.8025 H14A···O1i 3.4300
N1···H14Ai 3.4407 H14A···N1i 3.4407
C1···H11iv 3.0992 H14A···C13i 3.1820
C2···H2ii 3.4044 H14A···C14i 3.4899
C2···H3ii 3.3218 H14A···C14xiii 3.3758
C2···H5v 3.5950 H14A···H11xiii 3.5203
C2···H10ix 3.5929 H14A···H14Ai 3.1810
C2···H11iv 3.1669 H14A···H14Axiii 3.2490
C3···H2ii 3.1645 H14A···H14Bi 3.5061
C3···H8v 3.5369 H14A···H14Cxiii 2.7361
C3···H10ix 3.3992 H14B···O1i 2.8025
C3···H11iv 3.0516 H14B···C10xiii 3.0537
C4···H11iv 2.9005 H14B···C11xiii 3.4202
C5···H11iv 2.8846 H14B···C13i 3.0711
C5···H14Civ 3.0826 H14B···C14i 3.4086
C6···H11iv 2.9661 H14B···H8iii 3.1051
C6···H14Civ 3.0002 H14B···H8xvii 3.5810
C7···H3v 3.4668 H14B···H9iii 3.0059
C7···H4v 2.9911 H14B···H10xiii 2.7382
C8···H3v 3.0805 H14B···H11xiii 3.4153
C8···H4v 2.9579 H14B···H14Ai 3.5061
C8···H8i 3.0975 H14B···H14Bi 3.0623
C9···H4v 3.0259 H14C···S1vii 2.8892
C9···H5x 3.5246 H14C···C5vii 3.0826
C9···H9xi 3.1910 H14C···C6vii 3.0002
C10···H2xii 3.4004 H14C···C14xiii 3.2995
C10···H3xii 3.5790 H14C···H5vii 2.9882
C10···H4v 3.0919 H14C···H9iii 3.2172
C10···H9xi 3.5933 H14C···H14Axiii 2.7361
C10···H14Bxiii 3.0537 H14C···H14Cxiii 3.0883
C11···H4v 3.0998
C6—S1—C7 98.29 (7) O1—C13—C14 121.79 (11)
C1—N1—C12 115.85 (10) N1—C13—C14 117.28 (11)
C1—N1—C13 119.51 (11) C1—C2—H2 120.254
C12—N1—C13 123.31 (10) C3—C2—H2 120.238
N1—C1—C2 122.11 (12) C2—C3—H3 119.796
N1—C1—C6 117.79 (11) C4—C3—H3 119.785
C2—C1—C6 120.10 (11) C3—C4—H4 119.869
C1—C2—C3 119.51 (14) C5—C4—H4 119.868
C2—C3—C4 120.42 (13) C4—C5—H5 120.334
C3—C4—C5 120.26 (12) C6—C5—H5 120.348
C4—C5—C6 119.32 (14) C7—C8—H8 120.357
S1—C6—C1 119.23 (9) C9—C8—H8 120.357
S1—C6—C5 120.44 (11) C8—C9—H9 119.733
C1—C6—C5 120.32 (12) C10—C9—H9 119.730
S1—C7—C8 120.32 (11) C9—C10—H10 119.956
S1—C7—C12 119.31 (10) C11—C10—H10 119.958
C8—C7—C12 120.34 (13) C10—C11—H11 120.160
C7—C8—C9 119.29 (13) C12—C11—H11 120.169
C8—C9—C10 120.54 (13) C13—C14—H14A 109.468
C9—C10—C11 120.09 (15) C13—C14—H14B 109.466
C10—C11—C12 119.67 (14) C13—C14—H14C 109.474
N1—C12—C7 117.97 (13) H14A—C14—H14B 109.477
N1—C12—C11 121.98 (13) H14A—C14—H14C 109.471
C7—C12—C11 119.99 (12) H14B—C14—H14C 109.472
O1—C13—N1 120.91 (11)
C6—S1—C7—C8 −141.08 (9) C2—C1—C6—S1 −179.67 (11)
C6—S1—C7—C12 36.99 (9) C2—C1—C6—C5 −1.0 (2)
C7—S1—C6—C1 −37.65 (11) C6—C1—C2—C3 2.6 (2)
C7—S1—C6—C5 143.66 (10) C1—C2—C3—C4 −1.6 (3)
C1—N1—C12—C7 −48.72 (16) C2—C3—C4—C5 −0.9 (3)
C1—N1—C12—C11 128.40 (12) C3—C4—C5—C6 2.5 (3)
C12—N1—C1—C2 −131.80 (13) C4—C5—C6—S1 177.10 (12)
C12—N1—C1—C6 47.89 (17) C4—C5—C6—C1 −1.6 (2)
C1—N1—C13—O1 −11.7 (2) S1—C7—C8—C9 179.29 (7)
C1—N1—C13—C14 166.77 (11) S1—C7—C12—N1 0.64 (15)
C13—N1—C1—C2 60.91 (18) S1—C7—C12—C11 −176.54 (7)
C13—N1—C1—C6 −119.41 (13) C8—C7—C12—N1 178.71 (10)
C12—N1—C13—O1 −177.96 (13) C8—C7—C12—C11 1.52 (17)
C12—N1—C13—C14 0.5 (2) C12—C7—C8—C9 1.24 (17)
C13—N1—C12—C7 118.04 (14) C7—C8—C9—C10 −2.34 (17)
C13—N1—C12—C11 −64.84 (18) C8—C9—C10—C11 0.68 (18)
N1—C1—C2—C3 −177.76 (11) C9—C10—C11—C12 2.10 (19)
N1—C1—C6—S1 0.64 (18) C10—C11—C12—N1 179.74 (11)
N1—C1—C6—C5 179.34 (11) C10—C11—C12—C7 −3.19 (18)

Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+1/2, −y−1/2, −z; (iii) x, y−1, z; (iv) x, −y, z−1/2; (v) −x+1/2, −y+1/2, −z; (vi) x, y+1, z; (vii) x, −y, z+1/2; (viii) x, −y+1, z−1/2; (ix) −x+1/2, y−1/2, −z+1/2; (x) x, −y+1, z+1/2; (xi) −x+1, −y+1, −z+1; (xii) −x+1/2, y+1/2, −z+1/2; (xiii) −x+1, −y, −z+1; (xiv) −x+1/2, y−1/2, −z−1/2; (xv) −x+1/2, y+1/2, −z−1/2; (xvi) −x+1, y+1, −z+1/2; (xvii) −x+1, y−1, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FY2074).

References

  1. Chu, S. S. C. & Van der Helm, D. (1974). Acta Cryst. B30, 2489–2490.
  2. Chu, S. S. C. & Van der Helm, D. (1975). Acta Cryst. B31, 1179–1183.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Meester, P. & Chu, S. S. C. (1986). J. Heterocycl. Chem. 23, 1249–1252.
  5. Rigaku (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  6. Rigaku (2008). CrystalClear Rigaku Corporation, Tokyo, Japan.
  7. Rigaku (2010). CrystalStructure Rigaku Corporation, Tokyo, Japan.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Siddegowda, M. S., Jasinski, J. P., Golen, J. A. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1702. [DOI] [PMC free article] [PubMed]
  10. Wang, Q., Yang, L., Xu, Z. & Sun, Y. (2009). Acta Cryst. E65, o1978. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812045904/fy2074sup1.cif

e-68-o3369-sup1.cif (22.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812045904/fy2074Isup2.hkl

e-68-o3369-Isup2.hkl (127KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812045904/fy2074Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES