Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 17;68(Pt 12):o3371. doi: 10.1107/S1600536812046533

1-(2-Amino-6-methyl­pyrimidin-4-yl)-N,N-dimethyl­piperidin-4-aminium chloride

S Sreenivasa a,*, KE ManojKumar a, PA Suchetan b, T Srinivasan c, B S Palakshamurthy d, D Velmurgan c
PMCID: PMC3588967  PMID: 23476203

Abstract

In the title mol­ecular salt, C12H22N5 +·Cl, the cation is protonated at the dimethyl-substituted tertiary N atom. The piperidine ring adopts a chair conformation with the exocyclic N—C bond in an equatorial orientation. The dihedral angle between the piperidine ring (all atoms) and the pyrimidine ring is 14.00 (1)°. In the crystal, the ions are connected by N—H⋯N hydrogen bonds, forming inversion dimers, which are further connected by N—H⋯Cl hydrogen bonds. Aromatic π–π stacking inter­actions [centroid–centroid separation = 3.4790 (9) Å] are also observed in the structure.

Related literature  

For background to pyrimidine derivatives and their biological activity, see: Patel et al. (2003).graphic file with name e-68-o3371-scheme1.jpg

Experimental  

Crystal data  

  • C12H22N5 +·Cl

  • M r = 271.80

  • Monoclinic, Inline graphic

  • a = 24.7908 (12) Å

  • b = 8.2419 (4) Å

  • c = 13.8764 (6) Å

  • β = 91.968 (2)°

  • V = 2833.6 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 298 K

  • 0.21 × 0.18 × 0.03 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.947, T max = 0.994

  • 10807 measured reflections

  • 2502 independent reflections

  • 2266 reflections with I > 2σ(I)

  • R int = 0.024

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.107

  • S = 1.08

  • 2502 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812046533/hb6988sup1.cif

e-68-o3371-sup1.cif (21.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812046533/hb6988Isup2.hkl

e-68-o3371-Isup2.hkl (123KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812046533/hb6988Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3NB⋯Cl1 0.84 (2) 2.60 (2) 3.4284 (17) 167.2 (17)
N5—H5N⋯Cl1i 0.878 (19) 2.20 (2) 3.0785 (14) 177.1 (17)
N3—H3NA⋯N2 0.86 (2) 2.26 (2) 3.114 (2) 175.5 (18)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Dr S. C. Sharma, Vice Chancellor, Tumkur University, Tumkur, for his constant encouragement. BSPM thanks Dr H. C. Devarajegowda, Department of Physics, Yuvarajas College (constituent), University of Mysore, for his support and guidence.

supplementary crystallographic information

Comment

Nitrogen-containing heterocyclic ring such as pyrimidine is a promising structural moiety for drug design. Pyrimidine derivatives form a component in a number of useful drugs and are associated with many biological and therapeutical activities (Patel et al., 2003). In this view, we synthesized the title compound to study its crystal structure. The title compound crystallizes in monoclinic C2/c space group with the piperidine ring in the molecule adopting chair conformation. The dihedral angle between the piperidine ring and the pyrimidine ring in the molecule is 14.00 (1)°. In the crystal structure, the molecules are linked to one another through N—H···N hydrogen bonds generating R22(8) ring patterns forming inversion related dimers. These dimers are further connected to one another through N—H···Cl hydrogen bonds and weak π-π interactions.

Experimental

To a solution of 2-amino-4-chloro-6-methylpyrimidine (1.39 mmol) in acetonitrile (3 ml) was added 4-(dimethylamino)piperidine (1.66 mmol), xantphos (0.0695 mmol), Pd(OAc)2 (0.139 mmol) and Cs2CO3 (2.78 mmol). The reaction mixture was irradiated with microwave radiation at 60° C for 1.5 hrs. The reaction was monitored by TLC. The solvent was removed under reduced pressure and the crude product was purified by column chromatography using MDC/methanol as eluent. Colourless prisms were obtained from slow evaporation of the solution of the compound in dilute alcohol.

Refinement

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93- 0.97 Å. All C—H atoms were refined with isotropic displacement parameters (set to 1.2–1.5 times of the Ueq of the parent atom) and N—H atoms were refined freely

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal packing of the title compound. Hydrogen bonds and π-π interactions are shown as dashed lines.

Crystal data

C12H22N5+·Cl F(000) = 1168
Mr = 271.80 Prism
Monoclinic, C2/c Dx = 1.274 Mg m3
Hall symbol: -C 2yc Mo Kα radiation, λ = 0.71073 Å
a = 24.7908 (12) Å Cell parameters from 2266 reflections
b = 8.2419 (4) Å θ = 1.6–52°
c = 13.8764 (6) Å µ = 0.26 mm1
β = 91.968 (2)° T = 298 K
V = 2833.6 (2) Å3 Prism, colourless
Z = 8 0.21 × 0.18 × 0.03 mm

Data collection

Bruker APEXII CCD diffractometer 2502 independent reflections
Radiation source: fine-focus sealed tube 2266 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.024
Detector resolution: 1.20 pixels mm-1 θmax = 25.0°, θmin = 1.6°
ω scans h = −28→29
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) k = −9→8
Tmin = 0.947, Tmax = 0.994 l = −16→16
10807 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0623P)2 + 1.9022P] where P = (Fo2 + 2Fc2)/3
2502 reflections (Δ/σ)max = 0.032
176 parameters Δρmax = 0.28 e Å3
0 restraints Δρmin = −0.24 e Å3
0 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.199032 (17) 1.43859 (6) 1.09649 (3) 0.04241 (17)
H5N 0.2006 (7) 0.482 (2) 0.9400 (14) 0.034 (5)*
H3NA 0.0476 (8) 1.470 (3) 1.0540 (14) 0.044 (5)*
H3NB 0.0967 (9) 1.378 (2) 1.0672 (14) 0.038 (5)*
N1 0.07954 (5) 1.14699 (15) 0.96467 (10) 0.0313 (3)
N5 0.20241 (5) 0.49472 (15) 0.87744 (10) 0.0286 (3)
N2 −0.00534 (5) 1.28695 (16) 0.95048 (10) 0.0350 (3)
N4 0.09426 (5) 0.90139 (16) 0.89023 (10) 0.0325 (3)
C4 0.05934 (6) 1.02649 (18) 0.90933 (11) 0.0281 (3)
C3 0.00567 (6) 1.02975 (19) 0.87524 (11) 0.0319 (4)
H3 −0.0092 0.9435 0.8402 0.038*
C7 0.15214 (6) 0.93324 (19) 0.89292 (13) 0.0353 (4)
H7A 0.1605 1.0164 0.9406 0.042*
H7B 0.1625 0.9737 0.8306 0.042*
C6 0.18440 (6) 0.78141 (18) 0.91761 (12) 0.0338 (4)
H6A 0.2226 0.8049 0.9141 0.041*
H6B 0.1774 0.7484 0.9831 0.041*
C10 0.16963 (6) 0.64399 (17) 0.84886 (11) 0.0279 (3)
H10 0.1788 0.6761 0.7834 0.033*
C9 0.10936 (6) 0.6144 (2) 0.85116 (13) 0.0363 (4)
H9A 0.1003 0.5765 0.9147 0.044*
H9B 0.0993 0.5304 0.8050 0.044*
C2 −0.02438 (6) 1.1647 (2) 0.89536 (11) 0.0329 (4)
N3 0.06371 (7) 1.37851 (19) 1.05091 (12) 0.0416 (4)
C8 0.07765 (7) 0.7682 (2) 0.82731 (13) 0.0403 (4)
H8A 0.0832 0.7984 0.7608 0.048*
H8B 0.0395 0.7476 0.8341 0.048*
C1 0.04550 (6) 1.26709 (18) 0.98595 (11) 0.0307 (3)
C12 0.26044 (7) 0.5144 (2) 0.85548 (14) 0.0407 (4)
H12A 0.2740 0.6127 0.8844 0.061*
H12B 0.2641 0.5195 0.7869 0.061*
H12C 0.2806 0.4236 0.8810 0.061*
C11 0.18204 (7) 0.34164 (19) 0.83246 (13) 0.0397 (4)
H11A 0.1446 0.3278 0.8462 0.059*
H11B 0.2024 0.2515 0.8582 0.059*
H11C 0.1860 0.3468 0.7639 0.059*
C5 −0.08123 (8) 1.1816 (3) 0.85504 (15) 0.0527 (5)
H5A −0.0969 1.2794 0.8792 0.079*
H5B −0.1022 1.0901 0.8743 0.079*
H5C −0.0808 1.1862 0.7859 0.079*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0423 (3) 0.0540 (3) 0.0307 (2) −0.00239 (18) −0.00195 (18) 0.00571 (17)
N1 0.0286 (7) 0.0259 (7) 0.0397 (7) 0.0011 (5) 0.0026 (5) −0.0023 (5)
N5 0.0331 (7) 0.0263 (7) 0.0263 (7) 0.0036 (5) 0.0014 (5) 0.0005 (5)
N2 0.0335 (7) 0.0315 (7) 0.0399 (7) 0.0060 (6) 0.0011 (6) −0.0022 (6)
N4 0.0275 (7) 0.0266 (7) 0.0434 (8) 0.0023 (5) −0.0001 (6) −0.0071 (6)
C4 0.0307 (8) 0.0251 (7) 0.0286 (7) 0.0013 (6) 0.0045 (6) 0.0022 (6)
C3 0.0334 (8) 0.0325 (8) 0.0296 (8) 0.0027 (6) −0.0014 (6) −0.0032 (6)
C7 0.0287 (8) 0.0255 (8) 0.0518 (10) −0.0005 (6) 0.0050 (7) −0.0019 (7)
C6 0.0276 (8) 0.0267 (8) 0.0470 (9) 0.0009 (6) −0.0017 (7) −0.0061 (7)
C10 0.0337 (8) 0.0234 (7) 0.0266 (7) 0.0037 (6) 0.0015 (6) 0.0019 (6)
C9 0.0345 (9) 0.0266 (8) 0.0474 (10) 0.0001 (7) −0.0048 (7) −0.0086 (7)
C2 0.0319 (8) 0.0370 (9) 0.0299 (8) 0.0052 (7) 0.0010 (6) 0.0007 (7)
N3 0.0348 (8) 0.0326 (8) 0.0571 (9) 0.0052 (7) −0.0033 (7) −0.0124 (7)
C8 0.0356 (9) 0.0351 (9) 0.0494 (10) 0.0066 (7) −0.0094 (7) −0.0121 (8)
C1 0.0314 (8) 0.0261 (8) 0.0348 (8) 0.0002 (6) 0.0055 (6) 0.0006 (6)
C12 0.0325 (9) 0.0385 (9) 0.0510 (10) 0.0050 (7) 0.0022 (7) −0.0055 (8)
C11 0.0431 (9) 0.0241 (8) 0.0516 (10) 0.0029 (7) 0.0004 (8) −0.0036 (7)
C5 0.0419 (10) 0.0593 (12) 0.0559 (12) 0.0167 (9) −0.0140 (9) −0.0128 (10)

Geometric parameters (Å, º)

N1—C1 1.340 (2) C10—C9 1.515 (2)
N1—C4 1.342 (2) C10—H10 0.9800
N5—C11 1.488 (2) C9—C8 1.522 (2)
N5—C12 1.490 (2) C9—H9A 0.9700
N5—C10 1.5196 (19) C9—H9B 0.9700
N5—H5N 0.878 (19) C2—C5 1.505 (2)
N2—C2 1.341 (2) N3—C1 1.353 (2)
N2—C1 1.347 (2) N3—H3NA 0.85 (2)
N4—C4 1.378 (2) N3—H3NB 0.84 (2)
N4—C8 1.453 (2) C8—H8A 0.9700
N4—C7 1.458 (2) C8—H8B 0.9700
C4—C3 1.397 (2) C12—H12A 0.9600
C3—C2 1.373 (2) C12—H12B 0.9600
C3—H3 0.9300 C12—H12C 0.9600
C7—C6 1.518 (2) C11—H11A 0.9600
C7—H7A 0.9700 C11—H11B 0.9600
C7—H7B 0.9700 C11—H11C 0.9600
C6—C10 1.518 (2) C5—H5A 0.9600
C6—H6A 0.9700 C5—H5B 0.9600
C6—H6B 0.9700 C5—H5C 0.9600
C1—N1—C4 116.57 (13) C8—C9—H9A 109.4
C11—N5—C12 108.81 (12) C10—C9—H9B 109.4
C11—N5—C10 113.97 (12) C8—C9—H9B 109.4
C12—N5—C10 111.73 (12) H9A—C9—H9B 108.0
C11—N5—H5N 106.4 (12) N2—C2—C3 122.82 (14)
C12—N5—H5N 107.3 (12) N2—C2—C5 116.69 (14)
C10—N5—H5N 108.3 (12) C3—C2—C5 120.49 (15)
C2—N2—C1 115.07 (13) C1—N3—H3NA 119.1 (14)
C4—N4—C8 120.92 (13) C1—N3—H3NB 118.5 (13)
C4—N4—C7 118.99 (13) H3NA—N3—H3NB 116.1 (19)
C8—N4—C7 114.18 (13) N4—C8—C9 111.39 (13)
N1—C4—N4 116.06 (13) N4—C8—H8A 109.3
N1—C4—C3 120.80 (14) C9—C8—H8A 109.3
N4—C4—C3 123.14 (14) N4—C8—H8B 109.3
C2—C3—C4 117.64 (15) C9—C8—H8B 109.3
C2—C3—H3 121.2 H8A—C8—H8B 108.0
C4—C3—H3 121.2 N1—C1—N2 126.69 (14)
N4—C7—C6 111.57 (13) N1—C1—N3 116.72 (14)
N4—C7—H7A 109.3 N2—C1—N3 116.58 (14)
C6—C7—H7A 109.3 N5—C12—H12A 109.5
N4—C7—H7B 109.3 N5—C12—H12B 109.5
C6—C7—H7B 109.3 H12A—C12—H12B 109.5
H7A—C7—H7B 108.0 N5—C12—H12C 109.5
C10—C6—C7 111.07 (13) H12A—C12—H12C 109.5
C10—C6—H6A 109.4 H12B—C12—H12C 109.5
C7—C6—H6A 109.4 N5—C11—H11A 109.5
C10—C6—H6B 109.4 N5—C11—H11B 109.5
C7—C6—H6B 109.4 H11A—C11—H11B 109.5
H6A—C6—H6B 108.0 N5—C11—H11C 109.5
C9—C10—C6 108.89 (12) H11A—C11—H11C 109.5
C9—C10—N5 112.52 (12) H11B—C11—H11C 109.5
C6—C10—N5 108.95 (12) C2—C5—H5A 109.5
C9—C10—H10 108.8 C2—C5—H5B 109.5
C6—C10—H10 108.8 H5A—C5—H5B 109.5
N5—C10—H10 108.8 C2—C5—H5C 109.5
C10—C9—C8 111.32 (14) H5A—C5—H5C 109.5
C10—C9—H9A 109.4 H5B—C5—H5C 109.5

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3NB···Cl1 0.84 (2) 2.60 (2) 3.4284 (17) 167.2 (17)
N5—H5N···Cl1i 0.878 (19) 2.20 (2) 3.0785 (14) 177.1 (17)
N3—H3NA···N2 0.86 (2) 2.26 (2) 3.114 (2) 175.5 (18)

Symmetry code: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6988).

References

  1. Bruker (2004). APEX2, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Patel, R., Desai, K. & Chikhalia, K. (2003). J. Indian Chem. Soc. 80, 138–145.
  4. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812046533/hb6988sup1.cif

e-68-o3371-sup1.cif (21.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812046533/hb6988Isup2.hkl

e-68-o3371-Isup2.hkl (123KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812046533/hb6988Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES