Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 17;68(Pt 12):o3374. doi: 10.1107/S1600536812046259

(1S*,2R*,3S*,4R*,5R*)-5-Tetra­decyloxy­methyl-7-oxabicyclo­[2.2.1]heptane-2,3-dicarb­oxy­lic anhydride

Colin N Kelly a, Sarah M Sulon b, Lam N Pham c, Kang Rui Xiang c, Richard E Sykora c, David C Forbes c,*
PMCID: PMC3588970  PMID: 23476206

Abstract

In the title compound, C23H38O5, the oxabicyclo­[2.2.1]heptane-2,3-dicarb­oxy­lic anhydride unit has a normal geometry and the tetra­decoxymethyl side chain is fully extended. In the crystal, mol­ecules are linked head-to-head by C—H⋯O hydrogen bonds, forming two-dimensional networks propagating along the a and c-axis directions.

Related literature  

Olefinic hydrogenation of an oxabicyclo­[2.2.1]hept-5-ene derivative using catalytic quanti­ties of 10% Pd on carbon as catalyst afforded the title compound. For reviews on the Diels–Alder reaction, see: Oppolzer (1991); Pindur et al. (1993). For a review on asymmetric cyclo­addion processes, see: Pellissier (2012). For a review on catalytic hydrogenations, see: Brieger & Nestrick (1974). For a review on asymmetric catalytic hydrogenation processes, see: Knowles (2002). For discussions on reaction mechanisms with specifics on kinetic and thermodynamic control, see: Lowry & Richardson (1987); Smith (2012). For a discussion on Diels–Alder selectivity using maleic anhydride, see: Palmer (2004).graphic file with name e-68-o3374-scheme1.jpg

Experimental  

Crystal data  

  • C23H38O5

  • M r = 394.53

  • Monoclinic, Inline graphic

  • a = 6.8541 (5) Å

  • b = 35.206 (4) Å

  • c = 9.2992 (7) Å

  • β = 99.060 (7)°

  • V = 2216.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 180 K

  • 0.47 × 0.17 × 0.02 mm

Data collection  

  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.865, T max = 1.000

  • 9120 measured reflections

  • 4053 independent reflections

  • 2974 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.108

  • S = 1.04

  • 4053 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812046259/zl2516sup1.cif

e-68-o3374-sup1.cif (25.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812046259/zl2516Isup2.hkl

e-68-o3374-Isup2.hkl (200KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812046259/zl2516Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 1.00 2.30 3.163 (2) 144
C4—H4⋯O2ii 1.00 2.44 3.377 (2) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors gratefully acknowledge the National Science Foundation (NSF–CAREER grant to RES, CHE-0846680; NSF–RUI grant to DCF, CHE-0957482). DCF also gratefully acknowledges the Camille and Henry Dreyfus Foundation (TH-06–008) for partial support of this work.

supplementary crystallographic information

Comment

The pericyclic [4 + 2] cycloaddition can arguably be considered as one of the most versatile transformations when considering both atom economy and stereochemistry as reported by Oppolzer (1991), Pindur et al. (1993), and Pellissier (2012). When coupled to processes which are driven under kinetic or thermodynamic reaction conditions as illustrated by Lowry & Richardson (1987) and Smith (2012), the opportunity to illustrate both modalities on one unified system exists. That is, the irreversible hydrogenation of alkenes as reported by Brieger & Nestrick (1974) and Knowles (2002) and the reversible [4 + 2] cycloaddition when using not cyclopentadiene but furan with maleic anhydride as reported by Palmer (2004) provided us with a platform to illustrate both processes on one system. Upon reversible cycloaddition of a substituted furan with maleic anhydride, the resulting alkene was subjected to catalytic hydrogenation of the alkene.

As the end product was both crystalline and suitable for X-ray analysis, we succeeded in illustrating both reaction pathways of kinetic and thermodynamic driven processes through the establishment of five contiguous stereocenters, as shown in Fig. 1.

The title compound was isolated as the major product in moderate yield and offered definitive evidence of the facial selectivity involved in the catalytic hydrogenation as well as the juxtaposition of the anhydride relative to the bicyclic scaffold as a result of the [4 + 2] cycloaddition. The configurations of the preexisting sites C1, C2, C3, and C4 prior to the hydrogenation of the alkene are S, R, S, and R for one of the enantiomers of the racemic mixture, and R, S, R, and S for the other, respectively. The configuration of the newly formed stereocenter upon hydrogenation of the chiral racemic mixture is R for the former, S for the latter, which confirms a profile of kinetic reaction control for the hydrogenation and thermodynamic reaction control for the cycloaddition.

In the solid state structure of the title compound (Fig. 1) the small amount of vibrational motion of the tetradecoxymethyl tail group indicates a significant degree of non-covalent interactions within those domains. No unusual deviations from normal bond distances or bond angles are observed in the title molecule.

In the crystal, molecules are linked head-to-head via C-H···O hydrogen bonds (Table 1) to form V-shaped or folded two-dimensional networks extending in the a and c directions. In the crystal, there are clear hydrophobic and hydrophilic domains (Fig. 2).

Experimental

The Diels-Alder adduct, 5-tetradecoxymethyl-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic anhydride, was first synthesized by the following method. To a solution of 3-tetradecoxymethylfuran (1.3 g, 4.5 mmol) in toluene (25 ml) was added maleic anhydride (0.56 g, 5.7 mmol). The reaction mixture was allowed to stir at room temperature for a period of 24 h at which time the reaction was determined complete by thin layer chromatography. The reaction mixture was concentrated under reduced pressure and purified by column chromatography (EtOAc/hexanes, 1/4), to afford the cyclo adduct. (737 mg, 42% yield). TLC Rf 0.31 (EtOAc/hexanes, 1/4). Spectroscopic data for the Diels-Alder adduct, 5-tetradecoxymethyl-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic anhydride, are available in the archived CIF.

The title compound was prepared by bubbling hydrogen gas into a tetrahydrofuran (50 ml) solution consisting of the Diels-Alder adduct starting material (607 mg, 1.5 mmol) and 10% Pd/C (64 mg) for a period of no less than 90 min. at room temperature. The reaction mixture was then filtered through a plug of Celite and concentrated under reduced pressure. Purification by column chromatography (EtOAc/hexanes, 1/4) afforded the title compound (154 mg, 26% yield). Colourless plate-like crystals were obtained on slow evaporation of a solution in the solvent mixture EtOAc/hexanes (1/4). Spectroscopic data for the title compound are available in the archived CIF.

Refinement

H atoms were placed in calculated positions and treated as riding atoms: C-H = 0.98, 0.99 and 0.100 Å for CH3, CH2 and CH H atoms, respectively, with Uiso(H) = k × Ueq(C) where k = 1.5 for CH3 H atoms, and = 1.2 for other H atoms.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of the title molecule, with the atom numbering. The displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view along the a-axis of the crystal packing of the title compound, showing the undulating layers that result due to the large polar head groups.

Crystal data

C23H38O5 F(000) = 864
Mr = 394.53 Dx = 1.183 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2yn Cell parameters from 1915 reflections
a = 6.8541 (5) Å θ = 3.2–25.3°
b = 35.206 (4) Å µ = 0.08 mm1
c = 9.2992 (7) Å T = 180 K
β = 99.060 (7)° Plate, colourless
V = 2216.0 (3) Å3 0.47 × 0.17 × 0.02 mm
Z = 4

Data collection

Agilent Xcalibur Eos diffractometer 4053 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2974 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.028
Detector resolution: 16.0514 pixels mm-1 θmax = 25.3°, θmin = 3.2°
ω scans h = −8→8
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = 0→42
Tmin = 0.865, Tmax = 1.000 l = 0→11
9120 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049 H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0351P)2 + 0.6309P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
4053 reflections Δρmax = 0.18 e Å3
255 parameters Δρmin = −0.19 e Å3
0 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0027 (5)

Special details

Experimental. Spectroscopic data for the Diels-Alder adduct, 5-tetradecoxymethyl-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic anhydride: 1H NMR (300 MHz; CDCl3) δ 6.33 (s, 1H), 5.44 (s, 1H), 5.38 (s, 1H), 4.16 (dd, 2H), 3.45 (m, 2H), 3.25 (dd, 2H), 1.56 (m, 2H), 1.27 (b, 22H), 0.90 (t, 3H). Spectroscopic data for the title compound, (1S*,2R*,3S*,4R*,5R*)- 5-Tetradecoxymethyl-7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylic anhydride: 1H NMR (300 MHz; CDCl3) δ 5.00 (dd, 2H), 3.66 (m, 2H), 3.43 (m, 2H), 3.38 (d, 1H), 3.11 (d, 1H), 2.52 (m, 1H), 2.02 (m, 1H), 1.45 (d, 1H), 1.39 (m, 1H), 1.27 (b, 22H), 0.89 (t, 3H).
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.1284 (2) 0.69729 (4) 1.26562 (15) 0.0447 (5)
O2 −0.63572 (18) 0.71813 (4) 1.49758 (15) 0.0411 (5)
O3 −0.39098 (17) 0.69995 (4) 1.37987 (13) 0.0303 (4)
O4 0.15463 (17) 0.83205 (4) 1.30869 (13) 0.0313 (4)
O7 −0.11995 (16) 0.75732 (4) 1.59505 (12) 0.0275 (4)
C1 −0.3001 (2) 0.77966 (6) 1.57800 (19) 0.0273 (6)
C2 −0.4085 (2) 0.76561 (6) 1.42974 (18) 0.0253 (6)
C3 −0.2330 (2) 0.75869 (5) 1.34743 (18) 0.0243 (6)
C4 −0.0545 (2) 0.77017 (6) 1.46208 (18) 0.0247 (6)
C5 −0.0436 (2) 0.81327 (6) 1.48478 (18) 0.0271 (6)
C6 −0.2285 (3) 0.82006 (6) 1.5591 (2) 0.0301 (6)
C8 −0.2361 (3) 0.71674 (6) 1.32259 (19) 0.0299 (6)
C9 −0.4970 (2) 0.72724 (6) 1.44200 (19) 0.0283 (6)
C10 −0.0329 (2) 0.83762 (6) 1.35282 (19) 0.0285 (6)
C11 0.1794 (2) 0.85616 (6) 1.18939 (18) 0.0273 (6)
C12 0.3880 (2) 0.85308 (6) 1.15780 (19) 0.0292 (6)
C13 0.4198 (2) 0.87759 (6) 1.02767 (18) 0.0269 (6)
C14 0.6329 (2) 0.87751 (6) 0.99874 (18) 0.0267 (6)
C15 0.6614 (2) 0.89951 (6) 0.86264 (19) 0.0277 (6)
C16 0.8754 (2) 0.90104 (6) 0.83624 (18) 0.0254 (6)
C17 0.9015 (2) 0.92066 (6) 0.69409 (19) 0.0274 (6)
C18 1.1123 (2) 0.91929 (6) 0.66120 (19) 0.0284 (6)
C19 1.1398 (2) 0.94060 (6) 0.52315 (19) 0.0278 (6)
C20 1.3486 (2) 0.93808 (6) 0.48634 (19) 0.0295 (6)
C21 1.3765 (2) 0.96049 (6) 0.35073 (19) 0.0291 (6)
C22 1.5860 (3) 0.95956 (6) 0.31546 (19) 0.0299 (6)
C23 1.6097 (3) 0.98168 (6) 0.1793 (2) 0.0353 (7)
C24 1.8192 (3) 0.98184 (7) 0.1442 (2) 0.0438 (8)
H1 −0.37790 0.77670 1.65970 0.0330*
H2 −0.50540 0.78450 1.38020 0.0300*
H3 −0.24250 0.77370 1.25520 0.0290*
H4 0.07310 0.75860 1.44520 0.0300*
H5 0.07600 0.81880 1.55820 0.0320*
H6A −0.19290 0.83300 1.65420 0.0360*
H6B −0.32960 0.83530 1.49630 0.0360*
H10A −0.13950 0.83040 1.27280 0.0340*
H10B −0.05000 0.86470 1.37680 0.0340*
H11A 0.15120 0.88280 1.21340 0.0330*
H11B 0.08530 0.84870 1.10210 0.0330*
H12A 0.41690 0.82620 1.13750 0.0350*
H12B 0.48120 0.86120 1.24470 0.0350*
H13A 0.33260 0.86820 0.93970 0.0320*
H13B 0.38050 0.90400 1.04530 0.0320*
H14A 0.71880 0.88870 1.08380 0.0320*
H14B 0.67550 0.85090 0.98860 0.0320*
H15A 0.61300 0.92580 0.87100 0.0330*
H15B 0.57970 0.88760 0.77720 0.0330*
H16A 0.92690 0.87480 0.83520 0.0300*
H16B 0.95530 0.91460 0.91830 0.0300*
H17A 0.81270 0.90850 0.61290 0.0330*
H17B 0.86070 0.94750 0.69870 0.0330*
H18A 1.15080 0.89240 0.65140 0.0340*
H18B 1.20220 0.93030 0.74460 0.0340*
H19A 1.10620 0.96770 0.53460 0.0330*
H19B 1.04600 0.93030 0.44050 0.0330*
H20A 1.44290 0.94770 0.57010 0.0350*
H20B 1.38060 0.91110 0.47170 0.0350*
H21A 1.28550 0.95020 0.26650 0.0350*
H21B 1.33900 0.98730 0.36400 0.0350*
H22A 1.67730 0.97010 0.39900 0.0360*
H22B 1.62450 0.93280 0.30280 0.0360*
H23A 1.56790 1.00830 0.19130 0.0420*
H23B 1.52030 0.97070 0.09570 0.0420*
H24A 1.90850 0.99340 0.22500 0.0660*
H24B 1.82270 0.99650 0.05510 0.0660*
H24C 1.86120 0.95570 0.12970 0.0660*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0525 (9) 0.0385 (10) 0.0500 (9) −0.0013 (8) 0.0294 (7) −0.0091 (8)
O2 0.0253 (7) 0.0399 (10) 0.0616 (9) −0.0051 (7) 0.0178 (7) 0.0052 (8)
O3 0.0304 (7) 0.0286 (8) 0.0335 (7) −0.0033 (6) 0.0097 (5) 0.0003 (6)
O4 0.0277 (7) 0.0363 (9) 0.0318 (7) −0.0014 (6) 0.0104 (5) 0.0123 (6)
O7 0.0271 (6) 0.0345 (9) 0.0217 (6) −0.0018 (6) 0.0062 (5) 0.0064 (6)
C1 0.0258 (9) 0.0330 (12) 0.0256 (9) −0.0003 (9) 0.0119 (7) 0.0014 (8)
C2 0.0220 (9) 0.0274 (12) 0.0270 (9) 0.0014 (8) 0.0051 (7) 0.0046 (8)
C3 0.0270 (9) 0.0273 (12) 0.0195 (9) −0.0010 (8) 0.0066 (7) 0.0050 (8)
C4 0.0220 (9) 0.0303 (12) 0.0237 (9) −0.0002 (8) 0.0093 (7) 0.0062 (8)
C5 0.0260 (9) 0.0314 (12) 0.0240 (9) −0.0058 (8) 0.0045 (7) 0.0004 (8)
C6 0.0350 (11) 0.0292 (12) 0.0283 (10) −0.0026 (9) 0.0114 (8) −0.0033 (9)
C8 0.0314 (10) 0.0360 (13) 0.0237 (9) −0.0039 (9) 0.0085 (8) 0.0001 (9)
C9 0.0209 (9) 0.0332 (13) 0.0299 (10) 0.0017 (8) 0.0016 (8) 0.0051 (9)
C10 0.0264 (10) 0.0276 (12) 0.0329 (10) −0.0032 (8) 0.0095 (8) 0.0046 (9)
C11 0.0295 (10) 0.0277 (12) 0.0258 (9) −0.0041 (8) 0.0076 (7) 0.0071 (8)
C12 0.0264 (10) 0.0329 (13) 0.0290 (10) −0.0024 (9) 0.0069 (8) 0.0073 (9)
C13 0.0242 (9) 0.0281 (12) 0.0292 (10) 0.0000 (8) 0.0065 (8) 0.0055 (8)
C14 0.0247 (9) 0.0277 (12) 0.0286 (10) 0.0009 (8) 0.0068 (7) 0.0066 (8)
C15 0.0256 (10) 0.0291 (12) 0.0299 (10) 0.0017 (8) 0.0088 (8) 0.0060 (9)
C16 0.0253 (9) 0.0251 (12) 0.0268 (9) 0.0002 (8) 0.0076 (7) 0.0032 (8)
C17 0.0263 (10) 0.0272 (12) 0.0301 (10) 0.0009 (8) 0.0088 (8) 0.0060 (8)
C18 0.0272 (10) 0.0279 (12) 0.0314 (10) 0.0006 (8) 0.0088 (8) 0.0061 (9)
C19 0.0261 (9) 0.0281 (12) 0.0309 (10) −0.0007 (8) 0.0094 (8) 0.0038 (9)
C20 0.0284 (10) 0.0324 (12) 0.0293 (10) 0.0011 (9) 0.0091 (8) 0.0054 (9)
C21 0.0296 (10) 0.0306 (12) 0.0284 (10) −0.0003 (9) 0.0087 (8) 0.0041 (9)
C22 0.0300 (10) 0.0326 (13) 0.0287 (10) −0.0024 (9) 0.0092 (8) 0.0009 (9)
C23 0.0367 (11) 0.0404 (14) 0.0309 (10) −0.0048 (10) 0.0120 (8) 0.0042 (10)
C24 0.0439 (12) 0.0493 (16) 0.0428 (12) −0.0091 (11) 0.0212 (10) 0.0015 (11)

Geometric parameters (Å, º)

O1—C8 1.191 (2) C5—H5 1.0000
O2—C9 1.195 (2) C6—H6A 0.9900
O3—C8 1.392 (2) C6—H6B 0.9900
O3—C9 1.385 (2) C10—H10A 0.9900
O4—C10 1.4231 (19) C10—H10B 0.9900
O4—C11 1.428 (2) C11—H11A 0.9900
O7—C1 1.452 (2) C11—H11B 0.9900
O7—C4 1.452 (2) C12—H12A 0.9900
C1—C2 1.541 (2) C12—H12B 0.9900
C1—C6 1.524 (3) C13—H13A 0.9900
C2—C3 1.543 (2) C13—H13B 0.9900
C2—C9 1.493 (3) C14—H14A 0.9900
C3—C4 1.545 (2) C14—H14B 0.9900
C3—C8 1.495 (3) C15—H15A 0.9900
C4—C5 1.532 (3) C15—H15B 0.9900
C5—C6 1.555 (3) C16—H16A 0.9900
C5—C10 1.508 (3) C16—H16B 0.9900
C11—C12 1.508 (2) C17—H17A 0.9900
C12—C13 1.530 (3) C17—H17B 0.9900
C13—C14 1.526 (2) C18—H18A 0.9900
C14—C15 1.522 (3) C18—H18B 0.9900
C15—C16 1.526 (2) C19—H19A 0.9900
C16—C17 1.527 (3) C19—H19B 0.9900
C17—C18 1.524 (2) C20—H20A 0.9900
C18—C19 1.524 (3) C20—H20B 0.9900
C19—C20 1.526 (2) C21—H21A 0.9900
C20—C21 1.525 (3) C21—H21B 0.9900
C21—C22 1.523 (3) C22—H22A 0.9900
C22—C23 1.517 (3) C22—H22B 0.9900
C23—C24 1.522 (3) C23—H23A 0.9900
C1—H1 1.0000 C23—H23B 0.9900
C2—H2 1.0000 C24—H24A 0.9800
C3—H3 1.0000 C24—H24B 0.9800
C4—H4 1.0000 C24—H24C 0.9800
C8—O3—C9 110.30 (15) H11A—C11—H11B 108.00
C10—O4—C11 111.43 (13) C11—C12—H12A 109.00
C1—O7—C4 96.30 (12) C11—C12—H12B 109.00
O7—C1—C2 101.88 (14) C13—C12—H12A 109.00
O7—C1—C6 103.56 (13) C13—C12—H12B 109.00
C2—C1—C6 108.37 (15) H12A—C12—H12B 108.00
C1—C2—C3 101.00 (12) C12—C13—H13A 109.00
C1—C2—C9 111.51 (15) C12—C13—H13B 109.00
C3—C2—C9 104.65 (15) C14—C13—H13A 109.00
C2—C3—C4 102.17 (13) C14—C13—H13B 109.00
C2—C3—C8 103.85 (14) H13A—C13—H13B 108.00
C4—C3—C8 110.84 (15) C13—C14—H14A 109.00
O7—C4—C3 100.89 (12) C13—C14—H14B 109.00
O7—C4—C5 101.89 (13) C15—C14—H14A 109.00
C3—C4—C5 111.74 (14) C15—C14—H14B 109.00
C4—C5—C6 100.84 (14) H14A—C14—H14B 108.00
C4—C5—C10 117.28 (15) C14—C15—H15A 109.00
C6—C5—C10 114.95 (15) C14—C15—H15B 109.00
C1—C6—C5 101.99 (16) C16—C15—H15A 109.00
O1—C8—O3 119.31 (18) C16—C15—H15B 109.00
O1—C8—C3 129.97 (18) H15A—C15—H15B 108.00
O3—C8—C3 110.71 (15) C15—C16—H16A 109.00
O2—C9—O3 119.98 (18) C15—C16—H16B 109.00
O2—C9—C2 129.53 (17) C17—C16—H16A 109.00
O3—C9—C2 110.48 (13) C17—C16—H16B 109.00
O4—C10—C5 108.55 (14) H16A—C16—H16B 108.00
O4—C11—C12 109.93 (14) C16—C17—H17A 109.00
C11—C12—C13 111.78 (14) C16—C17—H17B 109.00
C12—C13—C14 113.45 (14) C18—C17—H17A 109.00
C13—C14—C15 113.41 (14) C18—C17—H17B 109.00
C14—C15—C16 113.84 (14) H17A—C17—H17B 108.00
C15—C16—C17 113.70 (13) C17—C18—H18A 109.00
C16—C17—C18 113.80 (14) C17—C18—H18B 109.00
C17—C18—C19 113.60 (14) C19—C18—H18A 109.00
C18—C19—C20 113.90 (14) C19—C18—H18B 109.00
C19—C20—C21 113.56 (14) H18A—C18—H18B 108.00
C20—C21—C22 114.35 (14) C18—C19—H19A 109.00
C21—C22—C23 113.41 (16) C18—C19—H19B 109.00
C22—C23—C24 114.18 (17) C20—C19—H19A 109.00
O7—C1—H1 114.00 C20—C19—H19B 109.00
C2—C1—H1 114.00 H19A—C19—H19B 108.00
C6—C1—H1 114.00 C19—C20—H20A 109.00
C1—C2—H2 113.00 C19—C20—H20B 109.00
C3—C2—H2 113.00 C21—C20—H20A 109.00
C9—C2—H2 113.00 C21—C20—H20B 109.00
C2—C3—H3 113.00 H20A—C20—H20B 108.00
C4—C3—H3 113.00 C20—C21—H21A 109.00
C8—C3—H3 113.00 C20—C21—H21B 109.00
O7—C4—H4 114.00 C22—C21—H21A 109.00
C3—C4—H4 114.00 C22—C21—H21B 109.00
C5—C4—H4 114.00 H21A—C21—H21B 108.00
C4—C5—H5 108.00 C21—C22—H22A 109.00
C6—C5—H5 108.00 C21—C22—H22B 109.00
C10—C5—H5 108.00 C23—C22—H22A 109.00
C1—C6—H6A 111.00 C23—C22—H22B 109.00
C1—C6—H6B 111.00 H22A—C22—H22B 108.00
C5—C6—H6A 111.00 C22—C23—H23A 109.00
C5—C6—H6B 111.00 C22—C23—H23B 109.00
H6A—C6—H6B 109.00 C24—C23—H23A 109.00
O4—C10—H10A 110.00 C24—C23—H23B 109.00
O4—C10—H10B 110.00 H23A—C23—H23B 108.00
C5—C10—H10A 110.00 C23—C24—H24A 109.00
C5—C10—H10B 110.00 C23—C24—H24B 109.00
H10A—C10—H10B 108.00 C23—C24—H24C 109.00
O4—C11—H11A 110.00 H24A—C24—H24B 110.00
O4—C11—H11B 110.00 H24A—C24—H24C 110.00
C12—C11—H11A 110.00 H24B—C24—H24C 109.00
C12—C11—H11B 110.00
C9—O3—C8—O1 179.49 (16) C8—C3—C4—O7 −74.70 (16)
C9—O3—C8—C3 0.42 (19) C8—C3—C4—C5 177.69 (13)
C8—O3—C9—O2 −179.69 (16) C2—C3—C8—O1 −178.60 (19)
C8—O3—C9—C2 −1.05 (18) C2—C3—C8—O3 0.34 (18)
C11—O4—C10—C5 −176.33 (15) C4—C3—C8—O1 −69.6 (2)
C10—O4—C11—C12 172.98 (15) C4—C3—C8—O3 109.38 (15)
C4—O7—C1—C2 58.09 (15) O7—C4—C5—C6 −38.51 (14)
C4—O7—C1—C6 −54.37 (15) O7—C4—C5—C10 −164.10 (12)
C1—O7—C4—C3 −57.67 (15) C3—C4—C5—C6 68.45 (16)
C1—O7—C4—C5 57.54 (13) C3—C4—C5—C10 −57.14 (17)
O7—C1—C2—C3 −35.03 (17) C4—C5—C6—C1 4.96 (16)
O7—C1—C2—C9 75.68 (15) C10—C5—C6—C1 132.10 (16)
C6—C1—C2—C3 73.78 (17) C4—C5—C10—O4 −69.48 (17)
C6—C1—C2—C9 −175.52 (14) C6—C5—C10—O4 172.27 (15)
O7—C1—C6—C5 30.12 (16) O4—C11—C12—C13 178.34 (15)
C2—C1—C6—C5 −77.52 (15) C11—C12—C13—C14 175.87 (16)
C1—C2—C3—C4 −0.33 (18) C12—C13—C14—C15 175.72 (16)
C1—C2—C3—C8 115.01 (16) C13—C14—C15—C16 177.53 (16)
C9—C2—C3—C4 −116.23 (15) C14—C15—C16—C17 175.87 (17)
C9—C2—C3—C8 −0.89 (17) C15—C16—C17—C18 −175.12 (17)
C1—C2—C9—O2 71.3 (2) C16—C17—C18—C19 −177.12 (16)
C1—C2—C9—O3 −107.15 (15) C17—C18—C19—C20 −177.78 (16)
C3—C2—C9—O2 179.68 (18) C18—C19—C20—C21 −178.20 (16)
C3—C2—C9—O3 1.21 (17) C19—C20—C21—C22 177.79 (16)
C2—C3—C4—O7 35.43 (17) C20—C21—C22—C23 179.38 (17)
C2—C3—C4—C5 −72.18 (16) C21—C22—C23—C24 178.66 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1···O1i 1.00 2.30 3.163 (2) 144
C4—H4···O2ii 1.00 2.44 3.377 (2) 156

Symmetry codes: (i) x−1/2, −y+3/2, z+1/2; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2516).

References

  1. Agilent (2012). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Brieger, G. & Nestrick, T. J. (1974). Chem. Rev. 74, 567–580.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Knowles, W. S. (2002). Angew. Chem. Int. Ed. 41, 1998–2007.
  5. Lowry, T. H. & Richardson, K. S. (1987). Mechanism and Theory in Organic Chemistry, 3rd ed. New York: Harper & Row.
  6. Oppolzer, W. (1991). Comprehensive Organic Synthesis, edited by B. M. Trost & I Fleming. Oxford: Pergamon.
  7. Palmer, D. R. J. (2004). J. Chem. Educ. 81, 1633–1635.
  8. Pellissier, H. (2012). Tetrahedron, 68, 2197–2232.
  9. Pindur, U., Lutz, G. & Otto, C. (1993). Chem. Rev. 93, 741–761.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Smith, M. B. (2012). March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 7th ed. New York: Wiley.
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812046259/zl2516sup1.cif

e-68-o3374-sup1.cif (25.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812046259/zl2516Isup2.hkl

e-68-o3374-Isup2.hkl (200KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812046259/zl2516Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES