Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 17;68(Pt 12):o3375. doi: 10.1107/S160053681204648X

2-Hy­droxy-5-[(E)-2-methyl­benzyl­idene]-8-(2-methyl­phen­yl)-9-phenyl-3,10-diaza­hexa­cyclo­[10.7.1.13,7.02,11.07,11.016,20]henicosa-1(20),12,14,16,18-pentaen-6-one

Abdulrahman I Almansour a, Raju Suresh Kumar a, Natarajan Arumugam a, Hasnah Osman b, J Suresh c,*
PMCID: PMC3588971  PMID: 23476207

Abstract

In the title compound, C40H34N2O2, the central piperidine ring adopts a half-chair conformation and the fused pyrrolidine rings adopt twisted envelope (with the C atom bearing the methylphenyl ring as the flap atom) and envelope (with the C atom bound to the N atom, common to the pyridinone and pyrrolidine rings being the flap atom) conformations. The mol­ecular structure features weak intra­molecular N—H⋯O and C—H⋯O inter­actions. In the crystal, O—H⋯O hydrogen bonds generate a C(7) chain along the b-axis direction. C—H⋯O inter­actions also occur.

Related literature  

For hydrogen-bond motifs, see: Bernstein et al. (1995). For similar structures, see: Kumar et al. (2010, 2011, 2012). For the importance of pyrrolidine, see: Asano et al. (2000); Shorvon (2001); Watson et al. (2001); Winchester & Fleet (1992). For puckering parameters, see: Cremer & Pople (1975).graphic file with name e-68-o3375-scheme1.jpg

Experimental  

Crystal data  

  • C40H34N2O2

  • M r = 574.69

  • Monoclinic, Inline graphic

  • a = 14.0679 (2) Å

  • b = 7.7245 (1) Å

  • c = 26.9686 (3) Å

  • β = 92.596 (1)°

  • V = 2927.60 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.21 × 0.15 × 0.13 mm

Data collection  

  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.973, T max = 0.978

  • 33520 measured reflections

  • 8777 independent reflections

  • 6575 reflections with I > 2σ(I)

  • R int = 0.047

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.137

  • S = 1.02

  • 8777 reflections

  • 404 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681204648X/pk2453sup1.cif

e-68-o3375-sup1.cif (30.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681204648X/pk2453Isup2.hkl

e-68-o3375-Isup2.hkl (429.3KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681204648X/pk2453Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 2.02 2.7828 (15) 155
C1—H1A⋯O2ii 0.97 2.46 3.3040 (16) 145
C57—H57B⋯O1 0.96 2.59 3.3859 (18) 141
N2—H2A⋯O2 0.92 (2) 2.27 (2) 2.8016 (18) 117 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This project was supported by the Research Center, College of Science, King Saud University.

supplementary crystallographic information

Comment

The pyrrolidine ring system has been the subject of research for more than three decades. Many natural and synthetic compounds with pyrrolidine moieties have received much attention because of their remarkable biological properties (Shorvon, 2001; Watson et al., 2001; Asano et al., 2000; Winchester et al., 1992). Recognizing the importance of such compounds in drug discovery and as a part of our ongoing research in the construction of novel heterocycles, has prompted us to investigate the 1,3-dipolar cycloaddition of bisarylmethylidene pyridinones with azomethine ylide generated in situ from acenaphthenequinone and proline, we and report the crystal structure of the resulting pyrrolidine cyclo-adduct in this paper.

In the title compound,C40H34N2 O2, the piperidine ring (N1/C1—C4/C9) adopts a half-chair conformation [Q = 0.6188 (2) Å, θ = 142.52 (2)°, φ = 123.6 (2)°; Cremer & Pople, 1975] which is in close agreement with those of the other related structures (Kumar et al. 2010; Kumar et al.2011; Kumar et al. 2012). The two fused pyrrolidine rings with atom sequences (N1/C4/C7—C9) and (N2/C4—C7), adopt a twisted envelope conformation (C9 atom as the flap) and an envelope conformation (C5 atom as the flap) respectively. The puckering parameters are Q = 0.4648 (15) Å, φ =325.20 (19)° for the N1/C4/C7—C9) pyrrolidine ring and Q = 0.3918 (16) Å, φ = 77.9 (2)° for the (N2/C4—C7) pyrrolidine ring. In the structure, the aryl ring C22—C27 is not coplanar with the mean plane of the piperidone ring [torsion angle C1—C2—C21—C22 is 5.77 (3)] °, which is due to non-bonded interactions between one of the ortho H atoms in the aryl ring and the equatorial H atom at the 2-position of the piperidone ring (H12A/H1A or H1B).

The molecular structure features weak intra-molecular N—H···O and C—H···O interactions. Intermolecular O2—H2···O1 bonds form an infinite one-dimensional chain parallel to the b axis, in a C11(7) motif (Bernstein et al., 1995).

Experimental

A mixture of 3,5-bis[(E)-(2-methylphenyl)methylidene]tetrahydro-4(1H)-pyridinone (1 mmol), acenaphthenequinone (1 mmol), and phenylglycine (1 mmol) were dissolved in methanol (5 ml) and refluxed in a water bath for 1 h. After completion of the reaction as evident from TLC, the mixture was poured into water (50 ml). The precipitated solid was filtered and washed with water to obtain the product which was further purified by recrystallization from ethyl acetate. Yield 89%, melting point 212–213°C

Refinement

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.97 Å and O—H = 0.82 Å. Uiso = 1.2Ueq(C) for CH CH2 groups and Uiso = 1.5Ueq(C) for OH and CH3 groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

A packing diagram viewed roughly down the a-axis, showing the H-bond motif C11(7).

Crystal data

C40H34N2O2 F(000) = 1216
Mr = 574.69 Dx = 1.304 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2000 reflections
a = 14.0679 (2) Å θ = 2–31°
b = 7.7245 (1) Å µ = 0.08 mm1
c = 26.9686 (3) Å T = 293 K
β = 92.596 (1)° Block, colourless
V = 2927.60 (7) Å3 0.21 × 0.15 × 0.13 mm
Z = 4

Data collection

Bruker Kappa APEXII diffractometer 8777 independent reflections
Radiation source: fine-focus sealed tube 6575 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.047
Detector resolution: 0.2 pixels mm-1 θmax = 30.4°, θmin = 1.5°
ω and φ scans h = −20→19
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −10→10
Tmin = 0.973, Tmax = 0.978 l = −38→38
33520 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0605P)2 + 1.2845P] where P = (Fo2 + 2Fc2)/3
8777 reflections (Δ/σ)max < 0.001
404 parameters Δρmax = 0.48 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
H2A 0.1618 (13) −0.048 (3) 0.1407 (7) 0.021 (5)*
C1 −0.08779 (9) 0.3112 (2) 0.19923 (5) 0.0140 (3)
H1A −0.0948 0.3696 0.2307 0.017*
H1B −0.1485 0.2587 0.1897 0.017*
C2 −0.06395 (9) 0.4456 (2) 0.16030 (5) 0.0138 (3)
C3 0.03856 (9) 0.4691 (2) 0.14943 (4) 0.0130 (3)
C4 0.10336 (9) 0.31845 (19) 0.16240 (5) 0.0120 (3)
C5 0.20821 (9) 0.34675 (19) 0.15125 (5) 0.0123 (3)
H5 0.2092 0.3925 0.1174 0.015*
C6 0.24693 (9) 0.1597 (2) 0.14945 (5) 0.0136 (3)
H6 0.2609 0.1174 0.1833 0.016*
C7 0.07621 (9) 0.15392 (19) 0.13098 (5) 0.0116 (3)
C8 −0.00249 (9) 0.06007 (19) 0.16306 (5) 0.0124 (3)
C9 0.07764 (9) 0.2551 (2) 0.21505 (5) 0.0139 (3)
H9A 0.1241 0.1725 0.2282 0.017*
H9B 0.0740 0.3515 0.2379 0.017*
C10 −0.08848 (9) 0.0412 (2) 0.12769 (5) 0.0135 (3)
C11 −0.06725 (9) 0.1136 (2) 0.08159 (5) 0.0133 (3)
C12 0.02524 (9) 0.18289 (19) 0.08079 (5) 0.0127 (3)
C13 0.05395 (10) 0.2586 (2) 0.03803 (5) 0.0167 (3)
H13 0.1141 0.3078 0.0367 0.020*
C14 −0.01019 (11) 0.2604 (2) −0.00437 (5) 0.0202 (3)
H14 0.0096 0.3098 −0.0336 0.024*
C15 −0.10010 (10) 0.1918 (2) −0.00362 (5) 0.0196 (3)
H15 −0.1397 0.1938 −0.0322 0.024*
C16 −0.13281 (10) 0.1180 (2) 0.04057 (5) 0.0163 (3)
C17 −0.22466 (10) 0.0493 (2) 0.04838 (5) 0.0201 (3)
H17 −0.2712 0.0515 0.0228 0.024*
C18 −0.24517 (10) −0.0208 (2) 0.09376 (6) 0.0206 (3)
H18 −0.3058 −0.0645 0.0981 0.025*
C19 −0.17692 (10) −0.0282 (2) 0.13393 (5) 0.0170 (3)
H19 −0.1917 −0.0790 0.1639 0.020*
C21 −0.12729 (9) 0.5353 (2) 0.13163 (5) 0.0152 (3)
H21 −0.1016 0.6046 0.1074 0.018*
C22 −0.23170 (9) 0.5386 (2) 0.13336 (5) 0.0159 (3)
C23 −0.27629 (10) 0.5428 (2) 0.17870 (5) 0.0184 (3)
H23 −0.2399 0.5296 0.2081 0.022*
C24 −0.37414 (10) 0.5663 (2) 0.18048 (6) 0.0233 (3)
H24 −0.4026 0.5730 0.2109 0.028*
C25 −0.42886 (10) 0.5797 (2) 0.13671 (6) 0.0257 (4)
H25 −0.4944 0.5943 0.1376 0.031*
C26 −0.38589 (10) 0.5714 (2) 0.09141 (6) 0.0235 (3)
H26 −0.4235 0.5781 0.0622 0.028*
C27 −0.28759 (10) 0.5533 (2) 0.08876 (5) 0.0181 (3)
C28 −0.24307 (11) 0.5548 (3) 0.03907 (5) 0.0240 (3)
H28A −0.2917 0.5402 0.0133 0.036*
H28B −0.1979 0.4620 0.0376 0.036*
H28C −0.2112 0.6633 0.0346 0.036*
C51 0.26791 (9) 0.4681 (2) 0.18393 (5) 0.0144 (3)
C52 0.28521 (10) 0.4299 (2) 0.23427 (5) 0.0195 (3)
H52 0.2572 0.3323 0.2476 0.023*
C53 0.34327 (11) 0.5341 (3) 0.26488 (6) 0.0245 (4)
H53 0.3548 0.5050 0.2981 0.029*
C54 0.38370 (11) 0.6815 (2) 0.24562 (6) 0.0242 (3)
H54 0.4216 0.7533 0.2659 0.029*
C55 0.36716 (10) 0.7212 (2) 0.19578 (6) 0.0215 (3)
H55 0.3942 0.8206 0.1830 0.026*
C56 0.31087 (9) 0.6156 (2) 0.16419 (5) 0.0162 (3)
C57 0.30179 (10) 0.6591 (2) 0.10950 (5) 0.0214 (3)
H57A 0.3332 0.7671 0.1037 0.032*
H57B 0.2357 0.6686 0.0993 0.032*
H57C 0.3307 0.5692 0.0908 0.032*
C61 0.33606 (9) 0.1507 (2) 0.11991 (5) 0.0140 (3)
C62 0.42569 (10) 0.1631 (2) 0.14398 (5) 0.0176 (3)
H62 0.4307 0.1691 0.1784 0.021*
C63 0.50781 (10) 0.1664 (2) 0.11694 (6) 0.0216 (3)
H63 0.5672 0.1750 0.1334 0.026*
C64 0.50103 (10) 0.1570 (2) 0.06563 (6) 0.0222 (3)
H64 0.5558 0.1591 0.0475 0.027*
C65 0.41180 (10) 0.1444 (2) 0.04118 (5) 0.0211 (3)
H65 0.4069 0.1382 0.0067 0.025*
C66 0.33007 (10) 0.1409 (2) 0.06832 (5) 0.0176 (3)
H66 0.2708 0.1319 0.0518 0.021*
N1 −0.01604 (8) 0.17311 (17) 0.20624 (4) 0.0136 (2)
N2 0.16681 (8) 0.06105 (18) 0.12630 (4) 0.0148 (2)
O1 0.06835 (7) 0.60208 (15) 0.13039 (4) 0.0166 (2)
O2 0.03037 (7) −0.09871 (14) 0.18344 (3) 0.0162 (2)
H2 0.0298 −0.1727 0.1616 0.024*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0134 (5) 0.0153 (7) 0.0134 (6) 0.0008 (5) 0.0025 (4) −0.0012 (5)
C2 0.0136 (5) 0.0135 (7) 0.0143 (6) −0.0004 (5) 0.0016 (4) −0.0029 (5)
C3 0.0138 (5) 0.0159 (7) 0.0092 (5) −0.0001 (5) 0.0002 (4) −0.0025 (5)
C4 0.0118 (5) 0.0132 (7) 0.0108 (5) 0.0000 (5) 0.0002 (4) −0.0006 (5)
C5 0.0117 (5) 0.0135 (7) 0.0119 (5) 0.0002 (5) 0.0002 (4) −0.0007 (5)
C6 0.0121 (5) 0.0158 (7) 0.0127 (5) 0.0008 (5) −0.0003 (4) 0.0000 (5)
C7 0.0116 (5) 0.0122 (7) 0.0109 (5) 0.0004 (5) 0.0007 (4) −0.0009 (5)
C8 0.0134 (5) 0.0130 (7) 0.0109 (5) −0.0002 (5) 0.0014 (4) 0.0005 (5)
C9 0.0143 (5) 0.0166 (7) 0.0109 (5) −0.0003 (5) 0.0005 (4) −0.0016 (5)
C10 0.0137 (5) 0.0126 (7) 0.0142 (6) 0.0008 (5) 0.0003 (4) −0.0016 (5)
C11 0.0148 (5) 0.0131 (7) 0.0121 (5) 0.0010 (5) 0.0004 (4) −0.0024 (5)
C12 0.0146 (5) 0.0121 (7) 0.0115 (5) 0.0012 (5) 0.0006 (4) −0.0021 (5)
C13 0.0171 (6) 0.0188 (8) 0.0143 (6) −0.0002 (6) 0.0027 (5) −0.0002 (6)
C14 0.0259 (7) 0.0240 (9) 0.0109 (6) 0.0033 (7) 0.0018 (5) 0.0017 (6)
C15 0.0239 (7) 0.0224 (8) 0.0122 (6) 0.0059 (6) −0.0034 (5) −0.0011 (6)
C16 0.0173 (6) 0.0162 (7) 0.0151 (6) 0.0025 (6) −0.0021 (5) −0.0039 (6)
C17 0.0159 (6) 0.0220 (9) 0.0218 (7) 0.0012 (6) −0.0048 (5) −0.0062 (6)
C18 0.0147 (6) 0.0216 (8) 0.0255 (7) −0.0025 (6) 0.0006 (5) −0.0049 (6)
C19 0.0169 (6) 0.0167 (7) 0.0175 (6) −0.0023 (6) 0.0038 (5) −0.0022 (6)
C21 0.0137 (6) 0.0158 (7) 0.0163 (6) 0.0006 (6) 0.0020 (4) −0.0006 (6)
C22 0.0138 (6) 0.0144 (7) 0.0197 (6) 0.0007 (6) 0.0016 (5) −0.0003 (6)
C23 0.0178 (6) 0.0180 (8) 0.0198 (6) 0.0013 (6) 0.0033 (5) 0.0000 (6)
C24 0.0186 (6) 0.0236 (9) 0.0282 (7) 0.0004 (6) 0.0080 (5) −0.0007 (7)
C25 0.0138 (6) 0.0261 (9) 0.0373 (9) 0.0003 (6) 0.0031 (6) 0.0000 (7)
C26 0.0167 (6) 0.0239 (9) 0.0293 (8) −0.0004 (6) −0.0043 (5) 0.0018 (7)
C27 0.0163 (6) 0.0163 (8) 0.0215 (7) 0.0008 (6) −0.0004 (5) 0.0009 (6)
C28 0.0237 (7) 0.0296 (10) 0.0187 (7) 0.0060 (7) 0.0003 (5) 0.0008 (7)
C51 0.0117 (5) 0.0157 (7) 0.0158 (6) −0.0001 (5) 0.0009 (4) −0.0035 (5)
C52 0.0183 (6) 0.0236 (8) 0.0165 (6) −0.0053 (6) 0.0004 (5) −0.0009 (6)
C53 0.0227 (7) 0.0336 (10) 0.0170 (6) −0.0058 (7) −0.0006 (5) −0.0054 (7)
C54 0.0197 (6) 0.0270 (9) 0.0256 (7) −0.0039 (7) −0.0016 (5) −0.0110 (7)
C55 0.0174 (6) 0.0176 (8) 0.0296 (8) −0.0025 (6) 0.0007 (5) −0.0030 (7)
C56 0.0127 (5) 0.0156 (7) 0.0203 (6) 0.0012 (6) 0.0015 (5) −0.0012 (6)
C57 0.0201 (6) 0.0212 (8) 0.0227 (7) −0.0030 (6) −0.0003 (5) 0.0056 (6)
C61 0.0123 (5) 0.0129 (7) 0.0167 (6) 0.0017 (5) 0.0001 (4) 0.0000 (5)
C62 0.0157 (6) 0.0200 (8) 0.0169 (6) 0.0008 (6) −0.0013 (5) 0.0001 (6)
C63 0.0126 (6) 0.0255 (9) 0.0265 (7) 0.0003 (6) −0.0011 (5) −0.0006 (7)
C64 0.0159 (6) 0.0252 (9) 0.0260 (7) 0.0004 (6) 0.0064 (5) −0.0039 (7)
C65 0.0205 (6) 0.0260 (9) 0.0172 (6) 0.0006 (7) 0.0038 (5) −0.0035 (6)
C66 0.0148 (6) 0.0221 (8) 0.0158 (6) 0.0006 (6) −0.0002 (5) −0.0023 (6)
N1 0.0140 (5) 0.0158 (6) 0.0109 (5) −0.0001 (5) 0.0009 (4) −0.0016 (5)
N2 0.0119 (5) 0.0143 (6) 0.0183 (5) 0.0006 (5) 0.0005 (4) −0.0024 (5)
O1 0.0160 (4) 0.0152 (5) 0.0188 (5) 0.0001 (4) 0.0024 (3) 0.0014 (4)
O2 0.0228 (5) 0.0121 (5) 0.0137 (4) 0.0018 (4) 0.0008 (4) 0.0007 (4)

Geometric parameters (Å, º)

C1—N1 1.4750 (18) C21—C22 1.4720 (18)
C1—C2 1.524 (2) C21—H21 0.9300
C1—H1A 0.9700 C22—C23 1.3997 (19)
C1—H1B 0.9700 C22—C27 1.4113 (19)
C2—C21 1.3451 (19) C23—C24 1.3916 (19)
C2—C3 1.4956 (17) C23—H23 0.9300
C3—O1 1.2303 (18) C24—C25 1.384 (2)
C3—C4 1.510 (2) C24—H24 0.9300
C4—C5 1.5343 (17) C25—C26 1.389 (2)
C4—C9 1.5598 (18) C25—H25 0.9300
C4—C7 1.565 (2) C26—C27 1.3950 (19)
C5—C51 1.5146 (19) C26—H26 0.9300
C5—C6 1.546 (2) C27—C28 1.505 (2)
C5—H5 0.9800 C28—H28A 0.9600
C6—N2 1.4757 (18) C28—H28B 0.9600
C6—C61 1.5173 (18) C28—H28C 0.9600
C6—H6 0.9800 C51—C52 1.3997 (19)
C7—N2 1.4730 (17) C51—C56 1.405 (2)
C7—C12 1.5192 (18) C52—C53 1.391 (2)
C7—C8 1.6082 (18) C52—H52 0.9300
C8—O2 1.4131 (17) C53—C54 1.384 (3)
C8—N1 1.4747 (17) C53—H53 0.9300
C8—C10 1.5133 (18) C54—C55 1.388 (2)
C9—N1 1.4718 (17) C54—H54 0.9300
C9—H9A 0.9700 C55—C56 1.399 (2)
C9—H9B 0.9700 C55—H55 0.9300
C10—C19 1.3721 (18) C56—C57 1.512 (2)
C10—C11 1.4073 (18) C57—H57A 0.9600
C11—C12 1.4082 (18) C57—H57B 0.9600
C11—C16 1.4083 (18) C57—H57C 0.9600
C12—C13 1.3703 (18) C61—C66 1.3921 (18)
C13—C14 1.4241 (19) C61—C62 1.3951 (18)
C13—H13 0.9300 C62—C63 1.3940 (19)
C14—C15 1.372 (2) C62—H62 0.9300
C14—H14 0.9300 C63—C64 1.385 (2)
C15—C16 1.417 (2) C63—H63 0.9300
C15—H15 0.9300 C64—C65 1.395 (2)
C16—C17 1.421 (2) C64—H64 0.9300
C17—C18 1.380 (2) C65—C66 1.3910 (19)
C17—H17 0.9300 C65—H65 0.9300
C18—C19 1.416 (2) C66—H66 0.9300
C18—H18 0.9300 N2—H2A 0.93 (2)
C19—H19 0.9300 O2—H2 0.8200
N1—C1—C2 114.20 (10) C18—C19—H19 120.7
N1—C1—H1A 108.7 C2—C21—C22 128.81 (13)
C2—C1—H1A 108.7 C2—C21—H21 115.6
N1—C1—H1B 108.7 C22—C21—H21 115.6
C2—C1—H1B 108.7 C23—C22—C27 119.23 (13)
H1A—C1—H1B 107.6 C23—C22—C21 121.02 (13)
C21—C2—C3 116.37 (12) C27—C22—C21 119.51 (12)
C21—C2—C1 125.87 (12) C24—C23—C22 121.09 (14)
C3—C2—C1 117.52 (12) C24—C23—H23 119.5
O1—C3—C2 122.21 (13) C22—C23—H23 119.5
O1—C3—C4 121.78 (12) C25—C24—C23 119.56 (14)
C2—C3—C4 116.00 (12) C25—C24—H24 120.2
C3—C4—C5 114.87 (12) C23—C24—H24 120.2
C3—C4—C9 106.86 (10) C24—C25—C26 119.97 (14)
C5—C4—C9 119.19 (10) C24—C25—H25 120.0
C3—C4—C7 111.75 (10) C26—C25—H25 120.0
C5—C4—C7 102.88 (10) C25—C26—C27 121.44 (14)
C9—C4—C7 100.20 (11) C25—C26—H26 119.3
C51—C5—C4 119.13 (11) C27—C26—H26 119.3
C51—C5—C6 114.20 (11) C26—C27—C22 118.67 (13)
C4—C5—C6 102.49 (11) C26—C27—C28 119.89 (13)
C51—C5—H5 106.7 C22—C27—C28 121.42 (12)
C4—C5—H5 106.7 C27—C28—H28A 109.5
C6—C5—H5 106.7 C27—C28—H28B 109.5
N2—C6—C61 112.81 (11) H28A—C28—H28B 109.5
N2—C6—C5 103.45 (10) C27—C28—H28C 109.5
C61—C6—C5 111.10 (12) H28A—C28—H28C 109.5
N2—C6—H6 109.8 H28B—C28—H28C 109.5
C61—C6—H6 109.8 C52—C51—C56 118.67 (13)
C5—C6—H6 109.8 C52—C51—C5 120.07 (13)
N2—C7—C12 111.75 (10) C56—C51—C5 121.18 (12)
N2—C7—C4 104.53 (10) C53—C52—C51 121.65 (15)
C12—C7—C4 117.16 (12) C53—C52—H52 119.2
N2—C7—C8 116.49 (12) C51—C52—H52 119.2
C12—C7—C8 103.71 (10) C54—C53—C52 119.58 (15)
C4—C7—C8 103.41 (10) C54—C53—H53 120.2
O2—C8—N1 104.98 (10) C52—C53—H53 120.2
O2—C8—C10 113.56 (12) C53—C54—C55 119.42 (15)
N1—C8—C10 115.24 (11) C53—C54—H54 120.3
O2—C8—C7 112.30 (10) C55—C54—H54 120.3
N1—C8—C7 105.94 (11) C54—C55—C56 121.76 (16)
C10—C8—C7 104.74 (10) C54—C55—H55 119.1
N1—C9—C4 103.36 (10) C56—C55—H55 119.1
N1—C9—H9A 111.1 C55—C56—C51 118.88 (13)
C4—C9—H9A 111.1 C55—C56—C57 118.99 (14)
N1—C9—H9B 111.1 C51—C56—C57 122.07 (13)
C4—C9—H9B 111.1 C56—C57—H57A 109.5
H9A—C9—H9B 109.1 C56—C57—H57B 109.5
C19—C10—C11 119.56 (12) H57A—C57—H57B 109.5
C19—C10—C8 131.59 (12) C56—C57—H57C 109.5
C11—C10—C8 108.84 (11) H57A—C57—H57C 109.5
C10—C11—C12 113.44 (12) H57B—C57—H57C 109.5
C10—C11—C16 123.08 (12) C66—C61—C62 118.77 (12)
C12—C11—C16 123.47 (13) C66—C61—C6 120.88 (12)
C13—C12—C11 118.88 (12) C62—C61—C6 120.24 (12)
C13—C12—C7 131.88 (12) C63—C62—C61 120.72 (13)
C11—C12—C7 109.24 (11) C63—C62—H62 119.6
C12—C13—C14 118.67 (13) C61—C62—H62 119.6
C12—C13—H13 120.7 C64—C63—C62 120.04 (13)
C14—C13—H13 120.7 C64—C63—H63 120.0
C15—C14—C13 122.37 (13) C62—C63—H63 120.0
C15—C14—H14 118.8 C63—C64—C65 119.74 (13)
C13—C14—H14 118.8 C63—C64—H64 120.1
C14—C15—C16 120.16 (13) C65—C64—H64 120.1
C14—C15—H15 119.9 C66—C65—C64 120.01 (13)
C16—C15—H15 119.9 C66—C65—H65 120.0
C11—C16—C15 116.39 (13) C64—C65—H65 120.0
C11—C16—C17 116.23 (13) C65—C66—C61 120.73 (13)
C15—C16—C17 127.38 (13) C65—C66—H66 119.6
C18—C17—C16 120.37 (13) C61—C66—H66 119.6
C18—C17—H17 119.8 C9—N1—C8 103.62 (10)
C16—C17—H17 119.8 C9—N1—C1 108.17 (12)
C17—C18—C19 122.17 (13) C8—N1—C1 116.07 (10)
C17—C18—H18 118.9 C7—N2—C6 111.07 (11)
C19—C18—H18 118.9 C7—N2—H2A 108.8 (11)
C10—C19—C18 118.53 (13) C6—N2—H2A 111.1 (11)
C10—C19—H19 120.7 C8—O2—H2 109.5
N1—C1—C2—C21 149.63 (14) C12—C11—C16—C15 2.2 (2)
N1—C1—C2—C3 −24.42 (17) C10—C11—C16—C17 1.9 (2)
C21—C2—C3—O1 26.7 (2) C12—C11—C16—C17 −177.20 (14)
C1—C2—C3—O1 −158.71 (13) C14—C15—C16—C11 −2.5 (2)
C21—C2—C3—C4 −152.30 (13) C14—C15—C16—C17 176.78 (16)
C1—C2—C3—C4 22.32 (17) C11—C16—C17—C18 −1.6 (2)
O1—C3—C4—C5 1.50 (18) C15—C16—C17—C18 179.11 (16)
C2—C3—C4—C5 −179.52 (11) C16—C17—C18—C19 −0.3 (3)
O1—C3—C4—C9 136.12 (13) C11—C10—C19—C18 −1.5 (2)
C2—C3—C4—C9 −44.91 (15) C8—C10—C19—C18 177.39 (15)
O1—C3—C4—C7 −115.20 (14) C17—C18—C19—C10 1.9 (2)
C2—C3—C4—C7 63.77 (14) C3—C2—C21—C22 179.94 (14)
C3—C4—C5—C51 72.82 (15) C1—C2—C21—C22 5.8 (3)
C9—C4—C5—C51 −55.89 (19) C2—C21—C22—C23 41.3 (2)
C7—C4—C5—C51 −165.51 (12) C2—C21—C22—C27 −144.41 (17)
C3—C4—C5—C6 −160.01 (11) C27—C22—C23—C24 −1.9 (2)
C9—C4—C5—C6 71.28 (15) C21—C22—C23—C24 172.40 (15)
C7—C4—C5—C6 −38.34 (12) C22—C23—C24—C25 2.3 (3)
C51—C5—C6—N2 166.72 (10) C23—C24—C25—C26 −0.7 (3)
C4—C5—C6—N2 36.46 (12) C24—C25—C26—C27 −1.4 (3)
C51—C5—C6—C61 −71.98 (14) C25—C26—C27—C22 1.7 (3)
C4—C5—C6—C61 157.77 (10) C25—C26—C27—C28 −176.57 (17)
C3—C4—C7—N2 149.97 (11) C23—C22—C27—C26 −0.1 (2)
C5—C4—C7—N2 26.21 (13) C21—C22—C27—C26 −174.49 (15)
C9—C4—C7—N2 −97.13 (11) C23—C22—C27—C28 178.19 (16)
C3—C4—C7—C12 25.69 (15) C21—C22—C27—C28 3.8 (2)
C5—C4—C7—C12 −98.08 (12) C4—C5—C51—C52 63.48 (18)
C9—C4—C7—C12 138.59 (11) C6—C5—C51—C52 −57.98 (16)
C3—C4—C7—C8 −87.65 (12) C4—C5—C51—C56 −119.80 (14)
C5—C4—C7—C8 148.58 (10) C6—C5—C51—C56 118.73 (14)
C9—C4—C7—C8 25.25 (12) C56—C51—C52—C53 0.2 (2)
N2—C7—C8—O2 1.91 (16) C5—C51—C52—C53 177.00 (14)
C12—C7—C8—O2 125.13 (11) C51—C52—C53—C54 1.3 (2)
C4—C7—C8—O2 −112.11 (12) C52—C53—C54—C55 −1.2 (2)
N2—C7—C8—N1 115.97 (12) C53—C54—C55—C56 −0.3 (2)
C12—C7—C8—N1 −120.81 (11) C54—C55—C56—C51 1.8 (2)
C4—C7—C8—N1 1.96 (13) C54—C55—C56—C57 −175.45 (14)
N2—C7—C8—C10 −121.77 (12) C52—C51—C56—C55 −1.7 (2)
C12—C7—C8—C10 1.45 (14) C5—C51—C56—C55 −178.49 (13)
C4—C7—C8—C10 124.21 (11) C52—C51—C56—C57 175.45 (13)
C3—C4—C9—N1 71.24 (13) C5—C51—C56—C57 −1.3 (2)
C5—C4—C9—N1 −156.48 (12) N2—C6—C61—C66 33.4 (2)
C7—C4—C9—N1 −45.38 (13) C5—C6—C61—C66 −82.26 (17)
O2—C8—C10—C19 57.4 (2) N2—C6—C61—C62 −150.62 (14)
N1—C8—C10—C19 −63.8 (2) C5—C6—C61—C62 93.74 (16)
C7—C8—C10—C19 −179.77 (16) C66—C61—C62—C63 0.3 (2)
O2—C8—C10—C11 −123.63 (13) C6—C61—C62—C63 −175.75 (15)
N1—C8—C10—C11 115.22 (13) C61—C62—C63—C64 −0.2 (3)
C7—C8—C10—C11 −0.75 (15) C62—C63—C64—C65 0.1 (3)
C19—C10—C11—C12 178.83 (14) C63—C64—C65—C66 −0.1 (3)
C8—C10—C11—C12 −0.32 (17) C64—C65—C66—C61 0.3 (3)
C19—C10—C11—C16 −0.4 (2) C62—C61—C66—C65 −0.4 (2)
C8—C10—C11—C16 −179.54 (13) C6—C61—C66—C65 175.66 (15)
C10—C11—C12—C13 −179.37 (14) C4—C9—N1—C8 48.13 (13)
C16—C11—C12—C13 −0.2 (2) C4—C9—N1—C1 −75.60 (12)
C10—C11—C12—C7 1.34 (17) O2—C8—N1—C9 88.49 (12)
C16—C11—C12—C7 −179.45 (13) C10—C8—N1—C9 −145.81 (12)
N2—C7—C12—C13 −54.6 (2) C7—C8—N1—C9 −30.52 (13)
C4—C7—C12—C13 66.0 (2) O2—C8—N1—C1 −153.10 (11)
C8—C7—C12—C13 179.16 (16) C10—C8—N1—C1 −27.41 (16)
N2—C7—C12—C11 124.59 (13) C7—C8—N1—C1 87.88 (13)
C4—C7—C12—C11 −114.86 (13) C2—C1—N1—C9 52.05 (14)
C8—C7—C12—C11 −1.68 (15) C2—C1—N1—C8 −63.82 (15)
C11—C12—C13—C14 −1.5 (2) C12—C7—N2—C6 124.29 (12)
C7—C12—C13—C14 177.57 (15) C4—C7—N2—C6 −3.38 (14)
C12—C13—C14—C15 1.2 (2) C8—C7—N2—C6 −116.76 (13)
C13—C14—C15—C16 1.0 (3) C61—C6—N2—C7 −140.82 (12)
C10—C11—C16—C15 −178.67 (14) C5—C6—N2—C7 −20.68 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2···O1i 0.82 2.02 2.7828 (15) 155
C1—H1A···O2ii 0.97 2.46 3.3040 (16) 145
C57—H57B···O1 0.96 2.59 3.3859 (18) 141
N2—H2A···O2 0.92 (2) 2.27 (2) 2.8016 (18) 117 (2)

Symmetry codes: (i) x, y−1, z; (ii) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2453).

References

  1. Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645–1680.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
  5. Kumar, R. S., Osman, H., Abdul Rahim, A. S., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o3045. [DOI] [PMC free article] [PubMed]
  6. Kumar, R. S., Osman, H., Rahim, A. S. A., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o2881–o2882. [DOI] [PMC free article] [PubMed]
  7. Kumar, R. S., Osman, H., Almansour, A. I., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o2094–o2095. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Shorvon, S. (2001). Lancet, 358, 1885–92. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265–295. [DOI] [PubMed]
  13. Winchester, B. & Fleet, G. W. J. (1992). Glycobiology, 2, 199–210. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681204648X/pk2453sup1.cif

e-68-o3375-sup1.cif (30.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681204648X/pk2453Isup2.hkl

e-68-o3375-Isup2.hkl (429.3KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681204648X/pk2453Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES