Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 17;68(Pt 12):o3377. doi: 10.1107/S1600536812044480

6-Methyl-1,3,5-triazine-2,4-diamine butane-1,4-diol monosolvate

Rajni M Bhardwaj a, Iain Oswald a, Alastair J Florence a,*
PMCID: PMC3588973  PMID: 23476209

Abstract

The title co-crystal, C4H7N5·C4H10O2, crystallizes with one mol­ecule of 6-methyl-1,3,5-triazine-2,4-diamine (DMT) and one mol­ecule of butane-1,4-diol in the asymmetric unit. The DMT mol­ecules form ribbons involving centrosymmetric R 2 2(8) dimer motifs between DMT mol­ecules along the c-axis direction. These ribbons are further hydrogen bonded to each other through butane-1,4-diol, forming sheets parallel to (121).

Related literature  

For background to DMT and related structural studies, see: Šebenik et al. (1989); Kaczmarek et al. (2008); Portalone (2008); Xiao (2008); Fan et al. (2009); Qian & Huang (2010); Thanigaimani et al. (2010); Perpétuo & Janczak (2007); Portalone & Colapietro (2007); Delori et al. (2008). For details of experimental methods used, see: Florence et al. (2003). For ring-motif nomenclature, see: Etter (1990).graphic file with name e-68-o3377-scheme1.jpg

Experimental  

Crystal data  

  • C4H7N5·C4H10O2

  • M r = 215.27

  • Triclinic, Inline graphic

  • a = 5.8755 (3) Å

  • b = 9.0515 (5) Å

  • c = 10.7607 (5) Å

  • α = 87.911 (3)°

  • β = 74.346 (3)°

  • γ = 83.550 (3)°

  • V = 547.55 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 123 K

  • 0.50 × 0.05 × 0.04 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.637, T max = 0.745

  • 7713 measured reflections

  • 1911 independent reflections

  • 1288 reflections with I > 2σ(I)

  • R int = 0.045

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.093

  • S = 1.00

  • 1911 reflections

  • 155 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: enCIFer (Allen et al., 2004) and WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812044480/bh2459sup1.cif

e-68-o3377-sup1.cif (20.2KB, cif)

Supplementary material file. DOI: 10.1107/S1600536812044480/bh2459Isup2.mol

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812044480/bh2459Isup3.hkl

e-68-o3377-Isup3.hkl (92.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812044480/bh2459Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.84 1.92 2.764 (2) 176
O2—H2⋯N1ii 0.84 1.94 2.777 (2) 178
N4—H7N⋯O1iii 0.92 (3) 2.52 (2) 3.173 (2) 128.5 (7)
N4—H8N⋯N2iv 0.85 (2) 2.19 (2) 3.037 (2) 178 (2)
N5—H9N⋯O1v 0.88 (2) 2.069 (19) 2.909 (2) 160.1 (18)
N5—H10N⋯N3v 0.87 (2) 2.14 (2) 3.008 (3) 179 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

RMB thanks the Commonwealth Scholarship Commission for providing a scholarship.

supplementary crystallographic information

Comment

2,4-diamino-6-methyl-1,3,5-triazine (DMT, acetoguanamine, Fig. 1) is used as an intermediate for pharmaceutical and resin synthesis (Šebenik et al., 1989). The crystal structures of the methanol, ethanol, DMF solvates and trifluoroacetate, phthalate, nitrate and chloride salts as well as of various complexes with aliphatic dicarboxylic acids have been reported in the literature (Kaczmarek et al., 2008; Portalone, 2008; Xiao, 2008; Fan et al., 2009; Qian & Huang, 2010; Thanigaimani et al., 2010; Portalone & Colapietro, 2007; Perpétuo & Janczak, 2007; Delori et al., 2008). The sample of DMT butane-1,4-diol solvate was isolated during an experimental physical form screen. The sample was identified as a novel form using multi-sample foil transmission X-ray powder diffraction analysis (Florence et al., 2003). A suitable sample for single-crystal X-ray diffraction analysis was obtained from slow evaporation of saturated butane-1,4-diol solution at room temperature. The title compound crystallizes in space group P1, with one molecule of DMT and one molecule of butane-1,4-diol in the asymmetric unit. Each DMT molecule forms two hydrogen-bonded dimers via an R22(8) motif (Etter, 1990) that extends to form a ribbon structure along the c-direction (Fig. 2). The hydrogen bonded DMT ribbons connect to adjacent ribbons through the solvent molecule, butane-1,4-diol, thus forming a second R32(8) ring motif (Fig. 2).These solvent separated ribbon structures extended to form sheets parallel to (121) plane, and are connected through hydrogen bond interactions via the hydroxyl groups. Solvent hydroxyl group also donates a hydrogen bond to the solvent in adjacent sheet, creating a three-dimensional layered structure (Fig. 3).

Experimental

A single needle shape crystal was grown from the saturated solution of DMT in butane-1,4-diol by isothermal solvent evaporation at 298 K.

Refinement

The positions of the N-bound H atoms were refined freely. All other H atoms were placed in calculated positions and refined in riding modes with X—H = 0.98 or 0.99 or 0.84 Å for the CH3, CH2 and OH groups, respectively. The Uiso(H) values were set to 1.5 or 1.2 times Ueq of their parent C atoms for the CH3 and CH2 groups, respectively. The Uiso(H) values were set to 1.5 times Ueq of their parent O atoms for the OH groups.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of 2,4-diamino-6-methyl-1,3,5-triazine (DMT), butane-1,4-diol solvate. Displacement ellipsoids are drawn at 50% probability level.

Fig. 2.

Fig. 2.

DMT molecules form ribbons through R22(8) dimer, ribbons are connected via H-bonding (shown in cyan dotted line) interactions mediated by butane-1,4-diol, thus give rise to sheet structure. C, N and H atoms are shown in black, blue and tan colour respectively. Other H atoms are omitted for clarity.

Fig. 3.

Fig. 3.

3-D Layered structure formed by sheets connected through H-bonding (cyan dotted line) mediated by butane-1,4-diol. C, N and H atoms are shown in grey, blue and white colour respectively. Other H atoms are omitted for clarity.

Crystal data

C4H7N5·C4H10O2 Z = 2
Mr = 215.27 F(000) = 232
Triclinic, P1 Dx = 1.306 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.8755 (3) Å Cell parameters from 1602 reflections
b = 9.0515 (5) Å θ = 2.3–24.6°
c = 10.7607 (5) Å µ = 0.10 mm1
α = 87.911 (3)° T = 123 K
β = 74.346 (3)° Needle, colourless
γ = 83.550 (3)° 0.50 × 0.05 × 0.04 mm
V = 547.55 (5) Å3

Data collection

Bruker APEXII CCD diffractometer 1911 independent reflections
Radiation source: fine-focus sealed tube 1288 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.045
φ and ω scans θmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −6→6
Tmin = 0.637, Tmax = 0.745 k = −10→10
7713 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0401P)2 + 0.1476P] where P = (Fo2 + 2Fc2)/3
1911 reflections (Δ/σ)max < 0.001
155 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.22 e Å3
0 constraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5923 (3) 0.3881 (2) 0.16893 (18) 0.0160 (5)
C2 0.2419 (3) 0.4825 (2) 0.30267 (18) 0.0163 (5)
C3 0.5020 (3) 0.3277 (2) 0.38201 (19) 0.0174 (5)
C4 0.5670 (4) 0.2448 (2) 0.49230 (19) 0.0243 (5)
H4A 0.4317 0.2559 0.5692 0.036*
H4B 0.7035 0.2850 0.5095 0.036*
H4C 0.6083 0.1393 0.4705 0.036*
C5 0.3181 (3) 0.1867 (2) 0.9133 (2) 0.0207 (5)
H5A 0.2639 0.1078 0.9771 0.025*
H5B 0.3114 0.2788 0.9615 0.025*
C6 0.5730 (3) 0.1418 (2) 0.83897 (19) 0.0182 (5)
H6A 0.6744 0.1373 0.8993 0.022*
H6B 0.6254 0.2195 0.7737 0.022*
C7 0.6115 (3) −0.0072 (2) 0.77120 (19) 0.0191 (5)
H7A 0.5611 −0.0855 0.8363 0.023*
H7B 0.5099 −0.0033 0.7110 0.023*
C8 0.8673 (3) −0.0489 (2) 0.69683 (19) 0.0220 (5)
H8A 0.8820 −0.1465 0.6551 0.026*
H8B 0.9165 0.0260 0.6282 0.026*
N1 0.6600 (3) 0.31119 (18) 0.26599 (15) 0.0175 (4)
N2 0.3851 (3) 0.47401 (18) 0.18167 (15) 0.0162 (4)
N3 0.2928 (3) 0.41094 (18) 0.40710 (15) 0.0174 (4)
N4 0.7434 (3) 0.3769 (2) 0.05127 (17) 0.0221 (4)
N5 0.0347 (3) 0.5670 (2) 0.32441 (19) 0.0201 (4)
O1 0.1589 (2) 0.21134 (16) 0.83288 (14) 0.0238 (4)
H1 0.1221 0.1293 0.8146 0.036*
O2 1.0196 (2) −0.05639 (16) 0.78135 (13) 0.0229 (4)
H2 1.1154 −0.1339 0.7660 0.034*
H7N 0.883 (4) 0.316 (3) 0.040 (2) 0.037 (7)*
H8N 0.704 (4) 0.418 (2) −0.013 (2) 0.028 (7)*
H9N −0.008 (3) 0.618 (2) 0.262 (2) 0.019 (6)*
H10N −0.059 (4) 0.572 (2) 0.402 (2) 0.026 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0178 (11) 0.0139 (11) 0.0162 (11) −0.0025 (9) −0.0042 (9) 0.0004 (9)
C2 0.0158 (11) 0.0155 (11) 0.0169 (11) −0.0015 (9) −0.0036 (9) 0.0005 (9)
C3 0.0192 (12) 0.0152 (11) 0.0180 (11) 0.0017 (9) −0.0069 (9) −0.0010 (9)
C4 0.0269 (12) 0.0266 (13) 0.0167 (11) 0.0075 (10) −0.0055 (10) 0.0007 (9)
C5 0.0165 (11) 0.0232 (13) 0.0221 (11) 0.0028 (9) −0.0062 (9) −0.0016 (9)
C6 0.0144 (11) 0.0194 (12) 0.0210 (11) −0.0004 (9) −0.0055 (9) −0.0001 (9)
C7 0.0166 (11) 0.0200 (12) 0.0212 (11) −0.0005 (9) −0.0067 (9) 0.0007 (9)
C8 0.0202 (12) 0.0240 (13) 0.0230 (11) 0.0021 (9) −0.0088 (10) −0.0032 (9)
N1 0.0176 (9) 0.0180 (10) 0.0151 (9) 0.0024 (7) −0.0031 (8) −0.0012 (7)
N2 0.0151 (9) 0.0164 (9) 0.0148 (9) 0.0024 (7) −0.0016 (7) 0.0008 (7)
N3 0.0184 (9) 0.0175 (10) 0.0145 (9) 0.0025 (7) −0.0033 (7) 0.0023 (7)
N4 0.0184 (11) 0.0272 (11) 0.0152 (10) 0.0082 (9) 0.0004 (9) 0.0015 (8)
N5 0.0172 (10) 0.0258 (11) 0.0120 (10) 0.0071 (8) 0.0005 (9) 0.0047 (8)
O1 0.0201 (8) 0.0202 (8) 0.0340 (9) 0.0013 (7) −0.0139 (7) 0.0009 (7)
O2 0.0171 (8) 0.0223 (9) 0.0299 (9) 0.0073 (6) −0.0102 (7) −0.0055 (7)

Geometric parameters (Å, º)

C1—N4 1.336 (2) C6—C7 1.522 (3)
C1—N2 1.345 (2) C6—H6A 0.9900
C1—N1 1.357 (2) C6—H6B 0.9900
C2—N5 1.331 (3) C7—C8 1.512 (3)
C2—N2 1.346 (2) C7—H7A 0.9900
C2—N3 1.362 (2) C7—H7B 0.9900
C3—N3 1.334 (2) C8—O2 1.434 (2)
C3—N1 1.342 (2) C8—H8A 0.9900
C3—C4 1.494 (3) C8—H8B 0.9900
C4—H4A 0.9800 N4—H7N 0.92 (2)
C4—H4B 0.9800 N4—H8N 0.85 (2)
C4—H4C 0.9800 N5—H9N 0.87 (2)
C5—O1 1.431 (2) N5—H10N 0.87 (2)
C5—C6 1.512 (3) O1—H1 0.8400
C5—H5A 0.9900 O2—H2 0.8400
C5—H5B 0.9900
N4—C1—N2 117.48 (18) C7—C6—H6B 108.7
N4—C1—N1 117.24 (18) H6A—C6—H6B 107.6
N2—C1—N1 125.28 (18) C8—C7—C6 113.03 (17)
N5—C2—N2 118.72 (19) C8—C7—H7A 109.0
N5—C2—N3 116.41 (18) C6—C7—H7A 109.0
N2—C2—N3 124.86 (18) C8—C7—H7B 109.0
N3—C3—N1 125.76 (18) C6—C7—H7B 109.0
N3—C3—C4 117.45 (18) H7A—C7—H7B 107.8
N1—C3—C4 116.79 (17) O2—C8—C7 110.49 (16)
C3—C4—H4A 109.5 O2—C8—H8A 109.6
C3—C4—H4B 109.5 C7—C8—H8A 109.6
H4A—C4—H4B 109.5 O2—C8—H8B 109.6
C3—C4—H4C 109.5 C7—C8—H8B 109.6
H4A—C4—H4C 109.5 H8A—C8—H8B 108.1
H4B—C4—H4C 109.5 C3—N1—C1 114.53 (16)
O1—C5—C6 113.42 (16) C1—N2—C2 114.71 (17)
O1—C5—H5A 108.9 C3—N3—C2 114.85 (17)
C6—C5—H5A 108.9 C1—N4—H7N 118.7 (14)
O1—C5—H5B 108.9 C1—N4—H8N 120.1 (15)
C6—C5—H5B 108.9 H7N—N4—H8N 121 (2)
H5A—C5—H5B 107.7 C2—N5—H9N 121.4 (13)
C5—C6—C7 114.11 (17) C2—N5—H10N 119.2 (14)
C5—C6—H6A 108.7 H9N—N5—H10N 119.4 (19)
C7—C6—H6A 108.7 C5—O1—H1 109.5
C5—C6—H6B 108.7 C8—O2—H2 109.5
O1—C5—C6—C7 −64.5 (2) N1—C1—N2—C2 1.1 (3)
C5—C6—C7—C8 179.55 (17) N5—C2—N2—C1 178.99 (18)
C6—C7—C8—O2 59.0 (2) N3—C2—N2—C1 −0.6 (3)
N3—C3—N1—C1 −0.1 (3) N1—C3—N3—C2 0.5 (3)
C4—C3—N1—C1 179.68 (18) C4—C3—N3—C2 −179.23 (18)
N4—C1—N1—C3 179.49 (18) N5—C2—N3—C3 −179.76 (18)
N2—C1—N1—C3 −0.8 (3) N2—C2—N3—C3 −0.1 (3)
N4—C1—N2—C2 −179.17 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2i 0.84 1.92 2.764 (2) 176
O2—H2···N1ii 0.84 1.94 2.777 (2) 178
N4—H7N···O1iii 0.92 (3) 2.52 (2) 3.173 (2) 128.5 (7)
N4—H8N···N2iv 0.85 (2) 2.19 (2) 3.037 (2) 178 (2)
N5—H9N···O1v 0.88 (2) 2.069 (19) 2.909 (2) 160.1 (18)
N5—H10N···N3v 0.87 (2) 2.14 (2) 3.008 (3) 179 (2)

Symmetry codes: (i) x−1, y, z; (ii) −x+2, −y, −z+1; (iii) x+1, y, z−1; (iv) −x+1, −y+1, −z; (v) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2459).

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Bruker (2007). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Delori, A., Suresh, E. & Pedireddi, V. R. (2008). Chem. Eur. J. 14, 6967–6977. [DOI] [PubMed]
  4. Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126.
  5. Fan, Y., You, W., Qian, H.-F., Liu, J.-L. & Huang, W. (2009). Acta Cryst. E65, o494. [DOI] [PMC free article] [PubMed]
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  8. Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938. [DOI] [PubMed]
  9. Kaczmarek, M., Radecka-Paryzek, W. & Kubicki, M. (2008). Acta Cryst. E64, o269. [DOI] [PMC free article] [PubMed]
  10. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  11. Perpétuo, G. J. & Janczak, J. (2007). Acta Cryst. C63, o271–o273. [DOI] [PubMed]
  12. Portalone, G. (2008). Acta Cryst. E64, o1685. [DOI] [PMC free article] [PubMed]
  13. Portalone, G. & Colapietro, M. (2007). Acta Cryst. C63, o655–o658. [DOI] [PubMed]
  14. Qian, H.-F. & Huang, W. (2010). Acta Cryst. E66, o759. [DOI] [PMC free article] [PubMed]
  15. Šebenik, A., Osredkar, U. & Žigon, M. (1989). Polym. Bull. 22, 155–161.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Thanigaimani, K., Devi, P., Muthiah, P. T., Lynch, D. E. & Butcher, R. J. (2010). Acta Cryst. C66, o324–o328. [DOI] [PubMed]
  18. Xiao, Z.-H. (2008). Acta Cryst. E64, o411. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812044480/bh2459sup1.cif

e-68-o3377-sup1.cif (20.2KB, cif)

Supplementary material file. DOI: 10.1107/S1600536812044480/bh2459Isup2.mol

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812044480/bh2459Isup3.hkl

e-68-o3377-Isup3.hkl (92.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812044480/bh2459Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES