Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 17;68(Pt 12):o3378. doi: 10.1107/S1600536812045229

2-Chloro-3-(4-methyl­anilino)naph­tha­lene-1,4-dione

Li-Jiu Gao a, Yun Liu a,*
PMCID: PMC3588974  PMID: 23476210

Abstract

In the title compound, C17H12ClNO2, the naphtho­quinone system is essentially planar [maximum deviation = 0.078 (2) Å] and makes a dihedral angle of 52.38 (7)° with the benzene ring. The crystal structure features N—H⋯O inter­actions.

Related literature  

For the properties of substituted naphtho­quinones, see: Batton et al. (2000); Monks et al. (1992). For standard bond lengths, see: Allen et al. (1987). For the structure of 2-hy­droxy­quinoxaline, see: Stępień et al. (1976).graphic file with name e-68-o3378-scheme1.jpg

Experimental  

Crystal data  

  • C17H12ClNO2

  • M r = 297.73

  • Orthorhombic, Inline graphic

  • a = 12.1614 (10) Å

  • b = 22.4915 (18) Å

  • c = 5.0444 (4) Å

  • V = 1379.79 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 296 K

  • 0.2 × 0.2 × 0.1 mm

Data collection  

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (XCAD4; Harms & Wocadlo, 1995) T min = 0.946, T max = 0.972

  • 15471 measured reflections

  • 2479 independent reflections

  • 2420 reflections with I > 2σ(I)

  • R int = 0.036

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.119

  • S = 1.27

  • 2479 reflections

  • 195 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812045229/ds2213sup1.cif

e-68-o3378-sup1.cif (16.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812045229/ds2213Isup2.hkl

e-68-o3378-Isup2.hkl (121.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812045229/ds2213Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N—H⋯O2 0.70 (2) 2.23 (3) 2.611 (3) 116 (2)

Acknowledgments

The authors acknowledge the financial support of Xuzhou City (XZZD1213).

supplementary crystallographic information

Comment

The substituted naphthoquinone have a diversity of biological activity and are playing an increasingly important role in developing new pharmaceuticals [Batton et al., 2000; Monks et al., 1992]. In our ongoing research work on the syntheses of amino-substituted naphthoquinones, we have prepared the title compound, (I), as one of the products. As part of this study, we have undertaken an X-ray crystallographic analysis of (I) in order to confirm its structure.

In the title compound, the bond lengths and angles of the title molecule (Fig. 1) are within normal ranges (Allen et al., 1987). The naphthoquinone ring[C1—C10] is essentially planar. The naphthoquinone ring makes the dihedral angle 52.38 (0.07) with the benzene ring [C11—C16]. Although atoms C9 and C11 attached to atom N are all of sp^2^ hybridization, their different environments cause slight differences in the N—C9, N—C11 bond lengths, and in the C9—N—H, C11—N—H angles (Table 1). The molecular packing is stabilized by intermolecular N—H···O hydrogen bonds (Table 2).

Experimental

To a stirred solution of naphthoquinone (1.0 eq) in 10 ml of acetonitrile, potassium carbonate (3.0 eq) was added. The mixture was stirred at room temperature for 5 min, followed by the addition of aniline (1.0 eq) and silver nitrate (0.1 mmol). The reaction mixture was refluxed for 10 h until complete consumption of starting material was observed on TLC. The reaction mixture was purified over silica gel (EtOAc/hexane)to afford the product in 96% yield.

Refinement

The H atoms were geometrically placed and were treated as riding, with C—H = 0.93 Å.

Figures

Fig. 1.

Fig. 1.

Ellipsoid plot.

Fig. 2.

Fig. 2.

Packing diagram.

Crystal data

C17H12ClNO2 Dx = 1.433 Mg m3
Mr = 297.73 Melting point: 475 K
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 25 reflections
a = 12.1614 (10) Å θ = 9–12°
b = 22.4915 (18) Å µ = 0.28 mm1
c = 5.0444 (4) Å T = 296 K
V = 1379.79 (19) Å3 Block, red
Z = 4 0.2 × 0.2 × 0.1 mm
F(000) = 616

Data collection

Enraf–Nonius CAD-4 diffractometer 2420 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.036
Graphite monochromator θmax = 25.4°, θmin = 1.8°
ω/2θ scans h = −14→14
Absorption correction: ψ scan (XCAD4; Harms & Wocadlo, 1995) k = −26→27
Tmin = 0.946, Tmax = 0.972 l = −6→6
15471 measured reflections 3 standard reflections every 200 reflections
2479 independent reflections intensity decay: none

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0725P)2 + 0.1832P] where P = (Fo2 + 2Fc2)/3
S = 1.27 (Δ/σ)max = 0.001
2479 reflections Δρmax = 0.41 e Å3
195 parameters Δρmin = −0.42 e Å3
1 restraint Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.083 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Flack parameter does not have any meaning here. Obviously anomalous contribution from Cl was not good enough to resolve the chirality.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.79748 (5) 0.74205 (2) 0.55999 (16) 0.0433 (2)
C10 1.05237 (17) 0.70460 (10) 0.0576 (6) 0.0407 (5)
C8 0.87671 (18) 0.71478 (10) 0.3028 (5) 0.0351 (5)
O1 0.73453 (13) 0.64787 (8) 0.1976 (5) 0.0514 (5)
C9 0.97837 (19) 0.73816 (10) 0.2467 (5) 0.0358 (5)
N 1.02703 (18) 0.78611 (10) 0.3494 (5) 0.0453 (6)
O2 1.14579 (14) 0.72164 (10) 0.0280 (5) 0.0623 (6)
C6 0.89985 (18) 0.63439 (10) −0.0415 (5) 0.0378 (5)
C11 0.97909 (19) 0.83701 (11) 0.4684 (5) 0.0393 (5)
C7 0.82917 (18) 0.66522 (9) 0.1601 (5) 0.0376 (5)
C5 1.00808 (18) 0.65242 (10) −0.0834 (5) 0.0395 (5)
C1 0.8574 (2) 0.58704 (11) −0.1871 (6) 0.0497 (7)
H1A 0.7848 0.5752 −0.1626 0.060*
C12 1.0318 (2) 0.86289 (12) 0.6821 (6) 0.0480 (6)
H12A 1.0960 0.8463 0.7492 0.058*
C16 0.8851 (2) 0.86286 (12) 0.3654 (6) 0.0475 (6)
H16A 0.8502 0.8463 0.2191 0.057*
C3 1.0317 (2) 0.57524 (13) −0.4066 (7) 0.0586 (7)
H3A 1.0758 0.5551 −0.5276 0.070*
C4 1.0739 (2) 0.62259 (13) −0.2648 (6) 0.0522 (7)
H4A 1.1464 0.6345 −0.2908 0.063*
C15 0.8440 (2) 0.91351 (12) 0.4826 (7) 0.0522 (7)
H15A 0.7807 0.9306 0.4127 0.063*
C13 0.9881 (2) 0.91369 (14) 0.7954 (7) 0.0579 (8)
H13A 1.0236 0.9307 0.9400 0.069*
C14 0.8930 (3) 0.93989 (12) 0.6993 (7) 0.0572 (7)
C2 0.9233 (3) 0.55771 (12) −0.3683 (7) 0.0582 (8)
H2A 0.8949 0.5260 −0.4651 0.070*
C17 0.8458 (3) 0.99422 (15) 0.8318 (9) 0.0829 (12)
H17A 0.7804 1.0064 0.7402 0.124*
H17B 0.8988 1.0258 0.8269 0.124*
H17C 0.8281 0.9851 1.0128 0.124*
H 1.082 (2) 0.7883 (12) 0.317 (6) 0.033 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0329 (3) 0.0546 (3) 0.0424 (3) 0.00269 (19) 0.0127 (3) 0.0028 (3)
C10 0.0276 (11) 0.0539 (11) 0.0407 (12) −0.0004 (8) 0.0058 (10) −0.0035 (12)
C8 0.0240 (10) 0.0460 (12) 0.0351 (11) 0.0060 (8) 0.0057 (9) 0.0038 (9)
O1 0.0278 (8) 0.0552 (10) 0.0712 (13) −0.0061 (7) 0.0072 (9) −0.0009 (9)
C9 0.0259 (11) 0.0456 (11) 0.0357 (12) 0.0016 (8) 0.0017 (10) −0.0012 (9)
N 0.0226 (10) 0.0570 (13) 0.0564 (14) −0.0033 (9) 0.0085 (10) −0.0117 (10)
O2 0.0310 (9) 0.0820 (13) 0.0739 (15) −0.0127 (8) 0.0194 (10) −0.0292 (12)
C6 0.0329 (12) 0.0402 (10) 0.0402 (12) 0.0013 (9) −0.0011 (9) 0.0046 (9)
C11 0.0294 (10) 0.0460 (11) 0.0425 (13) −0.0028 (9) 0.0077 (10) −0.0030 (10)
C7 0.0285 (10) 0.0397 (11) 0.0446 (13) 0.0014 (9) 0.0001 (9) 0.0085 (9)
C5 0.0321 (11) 0.0449 (11) 0.0414 (13) 0.0044 (9) −0.0002 (10) 0.0000 (10)
C1 0.0414 (13) 0.0452 (13) 0.0626 (17) −0.0036 (11) −0.0045 (12) 0.0005 (12)
C12 0.0369 (13) 0.0566 (14) 0.0504 (15) 0.0004 (10) 0.0004 (12) −0.0033 (12)
C16 0.0359 (12) 0.0593 (15) 0.0471 (14) −0.0015 (11) 0.0023 (11) 0.0026 (12)
C3 0.0538 (15) 0.0609 (15) 0.0612 (18) 0.0056 (11) 0.0077 (15) −0.0217 (15)
C4 0.0399 (13) 0.0591 (14) 0.0575 (17) 0.0010 (11) 0.0054 (13) −0.0110 (13)
C15 0.0394 (13) 0.0534 (14) 0.0638 (19) 0.0082 (11) 0.0123 (13) 0.0158 (12)
C13 0.0569 (17) 0.0587 (16) 0.0581 (18) −0.0068 (13) 0.0048 (15) −0.0135 (13)
C14 0.0584 (17) 0.0481 (13) 0.0650 (19) 0.0006 (12) 0.0234 (15) −0.0004 (13)
C2 0.0606 (17) 0.0498 (13) 0.0640 (19) 0.0001 (12) −0.0094 (14) −0.0143 (12)
C17 0.101 (3) 0.0615 (18) 0.086 (3) 0.0188 (19) 0.032 (2) −0.0042 (18)

Geometric parameters (Å, º)

Cl1—C8 1.728 (2) C12—C13 1.383 (4)
C10—O2 1.208 (3) C12—H12A 0.9300
C10—C5 1.474 (3) C16—C15 1.377 (4)
C10—C9 1.513 (3) C16—H16A 0.9300
C8—C9 1.373 (3) C3—C4 1.382 (4)
C8—C7 1.447 (3) C3—C2 1.389 (4)
O1—C7 1.230 (3) C3—H3A 0.9300
C9—N 1.335 (3) C4—H4A 0.9300
N—C11 1.418 (3) C15—C14 1.379 (5)
N—H 0.69 (3) C15—H15A 0.9300
C6—C1 1.393 (4) C13—C14 1.386 (5)
C6—C5 1.393 (3) C13—H13A 0.9300
C6—C7 1.501 (3) C14—C17 1.506 (4)
C11—C12 1.382 (4) C2—H2A 0.9300
C11—C16 1.383 (4) C17—H17A 0.9600
C5—C4 1.389 (4) C17—H17B 0.9600
C1—C2 1.383 (4) C17—H17C 0.9600
C1—H1A 0.9300
O2—C10—C5 122.5 (2) C13—C12—H12A 120.3
O2—C10—C9 118.6 (2) C15—C16—C11 119.1 (3)
C5—C10—C9 118.94 (18) C15—C16—H16A 120.4
C9—C8—C7 123.5 (2) C11—C16—H16A 120.4
C9—C8—Cl1 121.39 (19) C4—C3—C2 119.9 (3)
C7—C8—Cl1 115.08 (16) C4—C3—H3A 120.0
N—C9—C8 129.0 (2) C2—C3—H3A 120.0
N—C9—C10 112.6 (2) C3—C4—C5 119.9 (3)
C8—C9—C10 118.3 (2) C3—C4—H4A 120.0
C9—N—C11 129.4 (2) C5—C4—H4A 120.0
C9—N—H 113 (2) C16—C15—C14 122.6 (3)
C11—N—H 116 (2) C16—C15—H15A 118.7
C1—C6—C5 119.5 (2) C14—C15—H15A 118.7
C1—C6—C7 119.9 (2) C12—C13—C14 121.8 (3)
C5—C6—C7 120.6 (2) C12—C13—H13A 119.1
C12—C11—C16 119.9 (2) C14—C13—H13A 119.1
C12—C11—N 118.6 (2) C15—C14—C13 117.1 (3)
C16—C11—N 121.3 (2) C15—C14—C17 122.4 (3)
O1—C7—C8 122.8 (2) C13—C14—C17 120.5 (3)
O1—C7—C6 119.6 (2) C1—C2—C3 120.4 (3)
C8—C7—C6 117.64 (19) C1—C2—H2A 119.8
C4—C5—C6 120.3 (2) C3—C2—H2A 119.8
C4—C5—C10 119.5 (2) C14—C17—H17A 109.5
C6—C5—C10 120.2 (2) C14—C17—H17B 109.5
C2—C1—C6 119.9 (2) H17A—C17—H17B 109.5
C2—C1—H1A 120.1 C14—C17—H17C 109.5
C6—C1—H1A 120.1 H17A—C17—H17C 109.5
C11—C12—C13 119.5 (3) H17B—C17—H17C 109.5
C11—C12—H12A 120.3

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N—H···O2 0.70 (2) 2.23 (3) 2.611 (3) 116 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2213).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Batton, J. L., Trush, M. A., Penning, T. M., Dryhurst, G. & Monks, T. J. (2000). Chem. Res. Toxicol. 13, 135–160. [DOI] [PubMed]
  3. Enraf–Nonius. (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  4. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  5. Monks, T. J., Hanzlik, R. P., Cohen, G. M., Ross, D. & Graham, D. G. (1992). Toxicol. Appl. Pharmacol. 112, 2–16. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Stępień, A., Grabowski, M. J., Cygler, M. & Wajsman, E. (1976). Acta Cryst. B32, 2048–2050.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812045229/ds2213sup1.cif

e-68-o3378-sup1.cif (16.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812045229/ds2213Isup2.hkl

e-68-o3378-Isup2.hkl (121.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812045229/ds2213Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES