Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 17;68(Pt 12):o3380. doi: 10.1107/S1600536812044935

4-{[2-(2,4-Dinitro­phen­yl)hydrazinyl­idene](phen­yl)meth­yl}-5-methyl-2-phenyl-1H-pyrazol-3(2H)-one ethanol monosolvate

Omoruyi G Idemudia a,*, Alexander P Sadimenko a, Eric C Hosten b
PMCID: PMC3588976  PMID: 23476212

Abstract

In the title compound, C23H18N6O5·C2H6O, all three benzene rings lie in an approximate plane [maximum deviation = 0.2688 (16) Å] that makes an angle of 53.56 (3)° with the plane of the pyrazolone ring. Intra­molecular N—H⋯O hydrogen bonds occur. In the crystal, the ethanol solvent mol­ecule links adjacent mol­ecules through N—H⋯O—H⋯O hydrogen bonds, leading to an infinite chain along the c-axis direction. The ethyl group of the ethanol solvent mol­ecule is disordered over two set of sites in a 0.762 (5):0.238 (5) ratio.

Related literature  

For a related structure, see: Idemudia et al. (2012).graphic file with name e-68-o3380-scheme1.jpg

Experimental  

Crystal data  

  • C23H18N6O5·C2H6O

  • M r = 504.50

  • Monoclinic, Inline graphic

  • a = 12.8289 (4) Å

  • b = 14.3247 (4) Å

  • c = 14.4213 (4) Å

  • β = 111.347 (1)°

  • V = 2468.38 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 200 K

  • 0.61 × 0.43 × 0.39 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: numerical (SADABS; Bruker, 2008) T min = 0.89, T max = 0.96

  • 23873 measured reflections

  • 6124 independent reflections

  • 5136 reflections with I > 2σ(I)

  • R int = 0.014

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.116

  • S = 1.04

  • 6124 reflections

  • 368 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and SHELXLE (Hübschle et al., 2011); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812044935/ng5294sup1.cif

e-68-o3380-sup1.cif (32.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812044935/ng5294Isup2.hkl

e-68-o3380-Isup2.hkl (299.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812044935/ng5294Isup3.cdx

Supplementary material file. DOI: 10.1107/S1600536812044935/ng5294Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4N⋯O1 0.915 (17) 2.023 (17) 2.8261 (13) 145.6 (14)
N4—H4N⋯O2 0.915 (17) 2.040 (17) 2.6497 (14) 122.8 (13)
N2—H2N⋯O6i 0.936 (18) 1.711 (18) 2.6464 (14) 177.4 (16)
O6—H6⋯O1 0.89 (2) 1.72 (2) 2.5863 (14) 167 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors would like to thank the Department of Chemistry and Govan Mbeki Research and Development Centre (GMRDC) both of the University of Fort Hare for their support.

supplementary crystallographic information

Comment

Acylpyrazolone derived heterocycles have received considerable research interest due to their versatile reactivity and enormous applications. So have phenylhydrazine Schiff bases and its derivatives. We have reported the crystal structure of a phenyl hydrazone with 4-benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-one (Idemudia et al., 2012). Presented herein is the crystal structure report of an acylpyrazolone based dinitrophenyl hydrazone in continuation of our probe on acylpyrazolone Schiff bases.

In the titled compound the least square plane of the pyrazolone ring makes a dihedral angle of 53.56 (3) ° with the least square plane of all the phenyl rings C11–C16, C21–C26, and C31–C36. The largest deviation distance from the phenyl ring plane is C14 at 0.2688 (16) Å. The dihedral angles with the individual least square planes through the phenyl rings with the pyrazolone plane are 45.87 (7) °, 58.29 (7) ° and 55.84 (7) ° repectively. The ethyl group of the ethanol solvent molecule is disordered over two set of sites [occupancy ratio 0.762 (5):0.238 (5)].

H4N, the hydrogen on N4, has two intra molecular contacts of 2.023 (17) Å and 2.040 (17) Å with O1 and O2 respectievly (Table 1). A C36—H36···N3 intra molecular contact of 2.34 Å also occurs. Molecules of the title compound are stacked in the c axis direction and linked via the ethanol solvent molecule with N2—H2N···O6 and O6—H6···O1 inter molecular contacts of length 1.711 (18) Å and 1.72 (2) Å respectively (Figure 2). Adjacent molecules have a C26—H26···O5 interaction of 2.43 Å (Table 1).

Experimental

An equimolar mixture of 2,4-dinitrophenyl hydrazine and 4-benzoyl-3-methyl-1-phenyl-2-pyrazoline-5-one in ethanol stirred under reflux for 4 h, afforded a precipitate of the titled compound. Slow evaporation at room temperature of an ethanolic solution of it, gave red single crystals suitable for X-ray diffraction with a melting point of 233–236 °C after a few days.

Refinement

Carbon bound H atoms were placed in calculated positions and refined as riding atoms, with C—H = 0.95 Å (aromatic CH), 0.99 Å (CH2), 0.98 Å (CH3) and with Uiso(H) = 1.2 (1.5 for methyl) Ueq(C). The nitrogen and oxygen bound H atoms were located on a difference Fourier map and allowed to refine freely. The reflections 011 and 100 were omitted from the refinement since they were obscured by the beam-stop.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the titled compound, with atom labels and displacement ellipsoids drawn at 50% probability level.

Fig. 2.

Fig. 2.

Selected intra and inter molecular contacts, with displacement ellipsoids drawn at 50% probability level. Symmetry operators: ix, -y + 3/2, z - 1/2.

Crystal data

C23H18N6O5·C2H6O Dx = 1.358 Mg m3
Mr = 504.50 Melting point: 507 K
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 12.8289 (4) Å Cell parameters from 94 reflections
b = 14.3247 (4) Å θ = 2.9–28.9°
c = 14.4213 (4) Å µ = 0.10 mm1
β = 111.347 (1)° T = 200 K
V = 2468.38 (12) Å3 Block, red
Z = 4 0.61 × 0.43 × 0.39 mm
F(000) = 1056

Data collection

Bruker APEXII CCD diffractometer 6124 independent reflections
Graphite monochromator 5136 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1 Rint = 0.014
φ and ω scans θmax = 28.3°, θmin = 2.2°
Absorption correction: numerical (SADABS; Bruker, 2008) h = −16→17
Tmin = 0.89, Tmax = 0.96 k = −13→19
23873 measured reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.8241P] where P = (Fo2 + 2Fc2)/3
6124 reflections (Δ/σ)max < 0.001
368 parameters Δρmax = 0.28 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.14776 (8) 0.69594 (6) 0.47229 (6) 0.0383 (2)
O2 −0.07049 (9) 0.77842 (7) 0.42852 (9) 0.0543 (3)
O3 −0.22537 (11) 0.83873 (7) 0.42516 (10) 0.0588 (3)
O4 −0.53149 (10) 0.65498 (10) 0.42226 (12) 0.0730 (4)
O5 −0.53782 (10) 0.50904 (11) 0.38432 (14) 0.0876 (5)
O6 0.30397 (9) 0.73560 (9) 0.64059 (8) 0.0517 (3)
N1 0.20431 (9) 0.73686 (7) 0.34187 (7) 0.0317 (2)
N2 0.20240 (9) 0.69518 (7) 0.25557 (8) 0.0341 (2)
N3 −0.01147 (8) 0.51321 (7) 0.38324 (8) 0.0325 (2)
N4 −0.05711 (9) 0.59824 (7) 0.39281 (8) 0.0328 (2)
N5 −0.16820 (10) 0.77102 (7) 0.42199 (8) 0.0399 (2)
N6 −0.48924 (10) 0.58418 (10) 0.40330 (11) 0.0553 (3)
C1 0.15772 (9) 0.67707 (8) 0.39078 (8) 0.0299 (2)
C2 0.12604 (9) 0.59567 (8) 0.33014 (8) 0.0294 (2)
C3 0.15677 (10) 0.61039 (8) 0.24838 (9) 0.0321 (2)
C4 0.14119 (14) 0.55220 (10) 0.15841 (10) 0.0466 (3)
H4A 0.1162 0.5919 0.099 0.07*
H4B 0.0848 0.504 0.1522 0.07*
H4C 0.2123 0.5225 0.1649 0.07*
C5 0.07256 (9) 0.51282 (8) 0.35381 (8) 0.0292 (2)
C11 0.24261 (10) 0.82994 (8) 0.36714 (9) 0.0322 (2)
C12 0.17815 (12) 0.89102 (9) 0.39821 (11) 0.0424 (3)
H12 0.1083 0.8716 0.4005 0.051*
C13 0.21730 (15) 0.98106 (10) 0.42595 (12) 0.0514 (4)
H13 0.1746 1.0234 0.4484 0.062*
C14 0.31808 (15) 1.00912 (10) 0.42101 (12) 0.0532 (4)
H14 0.3447 1.0706 0.4406 0.064*
C15 0.38033 (14) 0.94861 (11) 0.38782 (12) 0.0520 (4)
H15 0.4485 0.9691 0.3828 0.062*
C16 0.34373 (11) 0.85755 (9) 0.36157 (10) 0.0410 (3)
H16 0.3873 0.8151 0.3402 0.049*
C21 0.11659 (10) 0.41870 (8) 0.34431 (8) 0.0304 (2)
C22 0.05139 (11) 0.33871 (9) 0.33661 (10) 0.0375 (3)
H22 −0.0221 0.3442 0.3374 0.045*
C23 0.09362 (13) 0.25170 (9) 0.32782 (11) 0.0453 (3)
H23 0.0489 0.1977 0.3227 0.054*
C24 0.20034 (13) 0.24258 (10) 0.32641 (10) 0.0461 (3)
H24 0.2282 0.1827 0.3189 0.055*
C25 0.26619 (12) 0.32073 (10) 0.33591 (11) 0.0455 (3)
H25 0.34 0.3147 0.3361 0.055*
C26 0.22459 (11) 0.40835 (9) 0.34526 (10) 0.0379 (3)
H26 0.2706 0.4618 0.3524 0.045*
C31 −0.16063 (10) 0.59744 (8) 0.39772 (8) 0.0302 (2)
C32 −0.21772 (10) 0.67863 (8) 0.41052 (9) 0.0322 (2)
C33 −0.32476 (11) 0.67409 (9) 0.41267 (9) 0.0364 (3)
H33 −0.3614 0.7291 0.4215 0.044*
C34 −0.37698 (10) 0.58920 (10) 0.40188 (10) 0.0393 (3)
C35 −0.32465 (11) 0.50752 (10) 0.38895 (11) 0.0422 (3)
H35 −0.3622 0.4493 0.3817 0.051*
C36 −0.21948 (11) 0.51165 (9) 0.38672 (10) 0.0378 (3)
H36 −0.1846 0.4557 0.3776 0.045*
H2N 0.2371 (14) 0.7212 (12) 0.2146 (13) 0.054 (5)*
H4N −0.0119 (14) 0.6495 (12) 0.4120 (12) 0.050 (4)*
H6 0.2561 (18) 0.7277 (14) 0.5787 (17) 0.072 (6)*
C6A 0.41626 (18) 0.74427 (15) 0.64338 (17) 0.0497 (6) 0.762 (5)
H6AA 0.4222 0.7136 0.584 0.06* 0.762 (5)
H6AB 0.4678 0.7119 0.7031 0.06* 0.762 (5)
C7A 0.4500 (3) 0.8432 (2) 0.64576 (19) 0.0669 (9) 0.762 (5)
H7AA 0.4044 0.8737 0.5833 0.1* 0.762 (5)
H7AB 0.5292 0.8467 0.6539 0.1* 0.762 (5)
H7AC 0.4389 0.8749 0.7017 0.1* 0.762 (5)
C6B 0.3762 (6) 0.8194 (5) 0.6360 (5) 0.053 (2) 0.238 (5)
H6BA 0.3433 0.8529 0.5719 0.064* 0.238 (5)
H6BB 0.3852 0.8636 0.6913 0.064* 0.238 (5)
C7B 0.4832 (8) 0.7761 (8) 0.6459 (10) 0.091 (4) 0.238 (5)
H7BA 0.4727 0.7356 0.5885 0.136* 0.238 (5)
H7BB 0.5105 0.7389 0.7071 0.136* 0.238 (5)
H7BC 0.5379 0.8248 0.6488 0.136* 0.238 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0441 (5) 0.0430 (5) 0.0328 (4) −0.0148 (4) 0.0199 (4) −0.0091 (4)
O2 0.0559 (6) 0.0345 (5) 0.0824 (8) −0.0116 (4) 0.0368 (6) −0.0076 (5)
O3 0.0760 (8) 0.0300 (5) 0.0843 (8) 0.0055 (5) 0.0457 (7) −0.0046 (5)
O4 0.0488 (6) 0.0734 (8) 0.1089 (11) 0.0175 (6) 0.0432 (7) 0.0078 (8)
O5 0.0437 (7) 0.0796 (10) 0.1479 (15) −0.0183 (6) 0.0448 (8) −0.0171 (9)
O6 0.0405 (5) 0.0805 (8) 0.0385 (5) −0.0101 (5) 0.0197 (4) −0.0182 (5)
N1 0.0401 (5) 0.0269 (5) 0.0327 (5) −0.0068 (4) 0.0186 (4) −0.0038 (4)
N2 0.0466 (6) 0.0290 (5) 0.0335 (5) −0.0046 (4) 0.0229 (4) −0.0024 (4)
N3 0.0329 (5) 0.0267 (5) 0.0399 (5) −0.0011 (4) 0.0154 (4) −0.0001 (4)
N4 0.0347 (5) 0.0252 (5) 0.0423 (5) −0.0032 (4) 0.0185 (4) −0.0012 (4)
N5 0.0526 (7) 0.0289 (5) 0.0443 (6) −0.0025 (5) 0.0249 (5) −0.0027 (4)
N6 0.0333 (6) 0.0630 (9) 0.0725 (9) 0.0017 (6) 0.0227 (6) 0.0030 (7)
C1 0.0308 (5) 0.0297 (5) 0.0305 (5) −0.0050 (4) 0.0129 (4) −0.0017 (4)
C2 0.0323 (5) 0.0259 (5) 0.0314 (5) −0.0024 (4) 0.0134 (4) −0.0012 (4)
C3 0.0383 (6) 0.0267 (5) 0.0338 (6) −0.0006 (4) 0.0162 (5) −0.0015 (4)
C4 0.0689 (9) 0.0375 (7) 0.0414 (7) −0.0057 (6) 0.0297 (7) −0.0093 (5)
C5 0.0296 (5) 0.0269 (5) 0.0302 (5) −0.0041 (4) 0.0098 (4) −0.0006 (4)
C11 0.0394 (6) 0.0254 (5) 0.0311 (5) −0.0054 (4) 0.0119 (5) −0.0003 (4)
C12 0.0466 (7) 0.0338 (6) 0.0478 (7) −0.0022 (5) 0.0182 (6) −0.0054 (5)
C13 0.0679 (10) 0.0303 (7) 0.0527 (8) 0.0016 (6) 0.0181 (7) −0.0058 (6)
C14 0.0717 (10) 0.0267 (6) 0.0499 (8) −0.0124 (6) 0.0089 (7) 0.0011 (6)
C15 0.0540 (8) 0.0406 (8) 0.0571 (9) −0.0187 (7) 0.0151 (7) 0.0049 (6)
C16 0.0425 (7) 0.0354 (6) 0.0466 (7) −0.0072 (5) 0.0181 (6) 0.0018 (5)
C21 0.0328 (6) 0.0273 (5) 0.0298 (5) −0.0020 (4) 0.0098 (4) −0.0001 (4)
C22 0.0366 (6) 0.0318 (6) 0.0414 (6) −0.0067 (5) 0.0108 (5) −0.0041 (5)
C23 0.0542 (8) 0.0294 (6) 0.0461 (7) −0.0078 (6) 0.0110 (6) −0.0064 (5)
C24 0.0596 (9) 0.0319 (6) 0.0423 (7) 0.0098 (6) 0.0132 (6) −0.0015 (5)
C25 0.0431 (7) 0.0435 (7) 0.0509 (8) 0.0108 (6) 0.0184 (6) 0.0043 (6)
C26 0.0348 (6) 0.0330 (6) 0.0465 (7) −0.0002 (5) 0.0155 (5) 0.0034 (5)
C31 0.0317 (5) 0.0293 (5) 0.0306 (5) −0.0022 (4) 0.0124 (4) −0.0004 (4)
C32 0.0384 (6) 0.0280 (6) 0.0317 (5) −0.0011 (5) 0.0145 (5) −0.0002 (4)
C33 0.0375 (6) 0.0374 (6) 0.0354 (6) 0.0061 (5) 0.0147 (5) 0.0016 (5)
C34 0.0284 (6) 0.0458 (7) 0.0442 (7) 0.0004 (5) 0.0137 (5) 0.0007 (5)
C35 0.0341 (6) 0.0367 (7) 0.0555 (8) −0.0072 (5) 0.0159 (6) −0.0049 (6)
C36 0.0342 (6) 0.0295 (6) 0.0511 (7) −0.0033 (5) 0.0172 (5) −0.0050 (5)
C6A 0.0436 (12) 0.0495 (12) 0.0643 (13) −0.0020 (9) 0.0296 (9) −0.0051 (9)
C7A 0.072 (2) 0.0563 (16) 0.0620 (14) −0.0192 (13) 0.0121 (12) 0.0037 (11)
C6B 0.044 (4) 0.060 (5) 0.049 (4) −0.006 (3) 0.008 (3) 0.001 (3)
C7B 0.052 (5) 0.074 (7) 0.150 (10) 0.005 (4) 0.041 (6) 0.025 (6)

Geometric parameters (Å, º)

O1—C1 1.2572 (14) C15—C16 1.3913 (19)
O2—N5 1.2270 (15) C15—H15 0.95
O3—N5 1.2269 (15) C16—H16 0.95
O4—N6 1.2268 (18) C21—C26 1.3886 (17)
O5—N6 1.2238 (19) C21—C22 1.3991 (16)
O6—C6A 1.432 (2) C22—C23 1.3831 (19)
O6—C6B 1.533 (8) C22—H22 0.95
O6—H6 0.89 (2) C23—C24 1.383 (2)
N1—N2 1.3725 (13) C23—H23 0.95
N1—C1 1.3767 (14) C24—C25 1.379 (2)
N1—C11 1.4218 (14) C24—H24 0.95
N2—C3 1.3358 (15) C25—C26 1.3895 (18)
N2—H2N 0.936 (18) C25—H25 0.95
N3—C5 1.2942 (15) C26—H26 0.95
N3—N4 1.3801 (14) C31—C36 1.4206 (16)
N4—C31 1.3554 (15) C31—C32 1.4219 (16)
N4—H4N 0.915 (17) C32—C33 1.3864 (17)
N5—C32 1.4512 (15) C33—C34 1.3696 (19)
N6—C34 1.4496 (17) C33—H33 0.95
C1—C2 1.4251 (15) C34—C35 1.3948 (19)
C2—C3 1.3888 (16) C35—C36 1.3626 (18)
C2—C5 1.4718 (15) C35—H35 0.95
C3—C4 1.4931 (17) C36—H36 0.95
C4—H4A 0.98 C6A—C7A 1.479 (3)
C4—H4B 0.98 C6A—H6AA 0.99
C4—H4C 0.98 C6A—H6AB 0.99
C5—C21 1.4873 (16) C7A—H7AA 0.98
C11—C12 1.3856 (18) C7A—H7AB 0.98
C11—C16 1.3863 (18) C7A—H7AC 0.98
C12—C13 1.3891 (19) C6B—C7B 1.466 (13)
C12—H12 0.95 C6B—H6BA 0.99
C13—C14 1.380 (2) C6B—H6BB 0.99
C13—H13 0.95 C7B—H7BA 0.98
C14—C15 1.377 (2) C7B—H7BB 0.98
C14—H14 0.95 C7B—H7BC 0.98
C6A—O6—H6 111.1 (13) C26—C21—C22 118.61 (11)
C6B—O6—H6 105.4 (13) C26—C21—C5 120.47 (10)
N2—N1—C1 109.04 (9) C22—C21—C5 120.91 (11)
N2—N1—C11 122.07 (9) C23—C22—C21 120.16 (12)
C1—N1—C11 128.75 (10) C23—C22—H22 119.9
C3—N2—N1 109.19 (9) C21—C22—H22 119.9
C3—N2—H2N 127.5 (11) C24—C23—C22 120.63 (13)
N1—N2—H2N 122.9 (11) C24—C23—H23 119.7
C5—N3—N4 118.09 (10) C22—C23—H23 119.7
C31—N4—N3 117.20 (10) C25—C24—C23 119.72 (13)
C31—N4—H4N 121.1 (10) C25—C24—H24 120.1
N3—N4—H4N 119.6 (10) C23—C24—H24 120.1
O3—N5—O2 122.46 (11) C24—C25—C26 120.00 (13)
O3—N5—C32 118.84 (11) C24—C25—H25 120.0
O2—N5—C32 118.70 (10) C26—C25—H25 120.0
O5—N6—O4 123.14 (13) C21—C26—C25 120.84 (12)
O5—N6—C34 117.91 (13) C21—C26—H26 119.6
O4—N6—C34 118.95 (13) C25—C26—H26 119.6
O1—C1—N1 123.79 (10) N4—C31—C36 119.51 (11)
O1—C1—C2 130.26 (10) N4—C31—C32 124.10 (10)
N1—C1—C2 105.94 (9) C36—C31—C32 116.37 (10)
C3—C2—C1 106.92 (10) C33—C32—C31 121.72 (11)
C3—C2—C5 128.31 (10) C33—C32—N5 115.87 (11)
C1—C2—C5 124.77 (10) C31—C32—N5 122.41 (11)
N2—C3—C2 108.91 (10) C34—C33—C32 119.12 (11)
N2—C3—C4 119.43 (11) C34—C33—H33 120.4
C2—C3—C4 131.56 (11) C32—C33—H33 120.4
C3—C4—H4A 109.5 C33—C34—C35 121.37 (11)
C3—C4—H4B 109.5 C33—C34—N6 119.33 (12)
H4A—C4—H4B 109.5 C35—C34—N6 119.30 (12)
C3—C4—H4C 109.5 C36—C35—C34 119.71 (12)
H4A—C4—H4C 109.5 C36—C35—H35 120.1
H4B—C4—H4C 109.5 C34—C35—H35 120.1
N3—C5—C2 125.94 (10) C35—C36—C31 121.70 (12)
N3—C5—C21 115.07 (10) C35—C36—H36 119.1
C2—C5—C21 119.00 (10) C31—C36—H36 119.1
C12—C11—C16 121.32 (12) O6—C6A—C7A 111.5 (2)
C12—C11—N1 118.94 (11) O6—C6A—H6AA 109.3
C16—C11—N1 119.74 (11) C7A—C6A—H6AA 109.3
C11—C12—C13 118.93 (13) O6—C6A—H6AB 109.3
C11—C12—H12 120.5 C7A—C6A—H6AB 109.3
C13—C12—H12 120.5 H6AA—C6A—H6AB 108.0
C14—C13—C12 120.18 (14) C7B—C6B—O6 102.9 (6)
C14—C13—H13 119.9 C7B—C6B—H6BA 111.2
C12—C13—H13 119.9 O6—C6B—H6BA 111.2
C15—C14—C13 120.48 (13) C7B—C6B—H6BB 111.2
C15—C14—H14 119.8 O6—C6B—H6BB 111.2
C13—C14—H14 119.8 H6BA—C6B—H6BB 109.1
C14—C15—C16 120.25 (14) C6B—C7B—H7BA 109.5
C14—C15—H15 119.9 C6B—C7B—H7BB 109.5
C16—C15—H15 119.9 H7BA—C7B—H7BB 109.5
C11—C16—C15 118.82 (13) C6B—C7B—H7BC 109.5
C11—C16—H16 120.6 H7BA—C7B—H7BC 109.5
C15—C16—H16 120.6 H7BB—C7B—H7BC 109.5
C1—N1—N2—C3 −0.45 (14) N3—C5—C21—C26 −159.14 (11)
C11—N1—N2—C3 −176.44 (11) C2—C5—C21—C26 20.72 (16)
C5—N3—N4—C31 163.07 (11) N3—C5—C21—C22 19.34 (16)
N2—N1—C1—O1 −179.97 (11) C2—C5—C21—C22 −160.80 (11)
C11—N1—C1—O1 −4.3 (2) C26—C21—C22—C23 −1.49 (19)
N2—N1—C1—C2 −0.23 (13) C5—C21—C22—C23 180.00 (12)
C11—N1—C1—C2 175.41 (11) C21—C22—C23—C24 −0.1 (2)
O1—C1—C2—C3 −179.48 (13) C22—C23—C24—C25 1.3 (2)
N1—C1—C2—C3 0.80 (13) C23—C24—C25—C26 −1.0 (2)
O1—C1—C2—C5 −0.3 (2) C22—C21—C26—C25 1.82 (19)
N1—C1—C2—C5 179.97 (11) C5—C21—C26—C25 −179.67 (12)
N1—N2—C3—C2 0.97 (14) C24—C25—C26—C21 −0.6 (2)
N1—N2—C3—C4 177.64 (12) N3—N4—C31—C36 −3.89 (17)
C1—C2—C3—N2 −1.10 (14) N3—N4—C31—C32 178.08 (11)
C5—C2—C3—N2 179.77 (11) N4—C31—C32—C33 178.43 (11)
C1—C2—C3—C4 −177.22 (14) C36—C31—C32—C33 0.34 (17)
C5—C2—C3—C4 3.6 (2) N4—C31—C32—N5 −1.50 (18)
N4—N3—C5—C2 0.72 (17) C36—C31—C32—N5 −179.59 (11)
N4—N3—C5—C21 −179.44 (10) O3—N5—C32—C33 −5.39 (17)
C3—C2—C5—N3 −134.04 (14) O2—N5—C32—C33 174.35 (12)
C1—C2—C5—N3 46.97 (18) O3—N5—C32—C31 174.54 (12)
C3—C2—C5—C21 46.12 (17) O2—N5—C32—C31 −5.72 (18)
C1—C2—C5—C21 −132.87 (12) C31—C32—C33—C34 −0.20 (18)
N2—N1—C11—C12 131.90 (13) N5—C32—C33—C34 179.73 (11)
C1—N1—C11—C12 −43.23 (18) C32—C33—C34—C35 0.1 (2)
N2—N1—C11—C16 −48.92 (17) C32—C33—C34—N6 −179.53 (12)
C1—N1—C11—C16 135.95 (13) O5—N6—C34—C33 173.35 (16)
C16—C11—C12—C13 −1.2 (2) O4—N6—C34—C33 −5.9 (2)
N1—C11—C12—C13 177.96 (12) O5—N6—C34—C35 −6.3 (2)
C11—C12—C13—C14 1.0 (2) O4—N6—C34—C35 174.49 (15)
C12—C13—C14—C15 0.6 (2) C33—C34—C35—C36 −0.1 (2)
C13—C14—C15—C16 −1.8 (2) N6—C34—C35—C36 179.48 (13)
C12—C11—C16—C15 −0.1 (2) C34—C35—C36—C31 0.3 (2)
N1—C11—C16—C15 −179.21 (12) N4—C31—C36—C35 −178.57 (12)
C14—C15—C16—C11 1.6 (2) C32—C31—C36—C35 −0.39 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N4—H4N···O1 0.915 (17) 2.023 (17) 2.8261 (13) 145.6 (14)
N4—H4N···O2 0.915 (17) 2.040 (17) 2.6497 (14) 122.8 (13)
N2—H2N···O6i 0.936 (18) 1.711 (18) 2.6464 (14) 177.4 (16)
O6—H6···O1 0.89 (2) 1.72 (2) 2.5863 (14) 167 (2)

Symmetry code: (i) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5294).

References

  1. Bruker (2008). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
  5. Idemudia, O. G., Sadimenko, A. P., Afolayan, A. J. & Hosten, E. C. (2012). Acta Cryst. E68, o1280–o1281. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812044935/ng5294sup1.cif

e-68-o3380-sup1.cif (32.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812044935/ng5294Isup2.hkl

e-68-o3380-Isup2.hkl (299.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812044935/ng5294Isup3.cdx

Supplementary material file. DOI: 10.1107/S1600536812044935/ng5294Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES