Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 17;68(Pt 12):o3381. doi: 10.1107/S1600536812045412

2-(3,5-Dimethyl-1H-pyrazol-1-yl)-2-hy­droxy­imino-N′-[1-(pyridin-2-yl)ethyl­idene]acetohydrazide

Maxym O Plutenko a,*, Rostislav D Lampeka a, Matti Haukka b, Ebbe Nordlander c
PMCID: PMC3588977  PMID: 23476213

Abstract

In the title compound, C14H16N6O2, the dihedral angles formed by the mean plane of the acetohydrazide group [maximum deviation 0.0629 (12) Å] with the pyrazole and pyridine rings are 81.62 (6) and 38.38 (4)° respectively. In the crystal, mol­ecules are connected by N—H⋯O and O—H⋯N hydrogen bonds into supra­molecular chains extending parallel to the c-axis direction.

Related literature  

For uses of polynuclear complexes, see: Świątek-Kozłowska et al. (2000); Wörl et al. (2005). For the use of oximes having additional donor functions as versatile ligands, see: Krämer & Fritsky (2000); Sachse et al. (2008); Kanderal et al. (2005). For related structures, see: Moroz et al. (2012); Mokhir et al. (2002); Sliva et al. (1997). For the synthesis, see: Kozikowski & Adamczyk (1983).graphic file with name e-68-o3381-scheme1.jpg

Experimental  

Crystal data  

  • C14H16N6O2

  • M r = 300.33

  • Monoclinic, Inline graphic

  • a = 24.5792 (6) Å

  • b = 7.5795 (2) Å

  • c = 8.3072 (2) Å

  • β = 107.335 (1)°

  • V = 1477.32 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.36 × 0.28 × 0.21 mm

Data collection  

  • Bruker Kappa APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008) T min = 0.966, T max = 0.980

  • 8846 measured reflections

  • 4395 independent reflections

  • 4096 reflections with I > 2σ(I)

  • R int = 0.016

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.081

  • S = 1.03

  • 4395 reflections

  • 204 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812045412/rz5011sup1.cif

e-68-o3381-sup1.cif (16.9KB, cif)

Supplementary material file. DOI: 10.1107/S1600536812045412/rz5011Isup2.mol

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812045412/rz5011Isup3.hkl

e-68-o3381-Isup3.hkl (215.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812045412/rz5011Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯N6i 0.88 1.79 2.6686 (13) 175
N3—H3N⋯O1i 0.86 2.17 3.0196 (13) 174

Symmetry code: (i) Inline graphic.

Acknowledgments

Financial support from the State Fund for Fundamental Research of Ukraine (grant No. F40.3/041) and the Swedish Institute (Visby Program) is gratefully acknowledged.

supplementary crystallographic information

Comment

Polynuclear complexes and supramolecular assemblies based on the bridging ligands are widely used in molecular magnetism, crystal engineering, bioinorganic modeling and catalysis (Świątek-Kozłowska et al., 2000; Wörl et al., 2005). One of the most efficient bridging ligands are oximes. Polydentate ligands containing both oxime and other donor functions (e.g., carboxylic, amide, hydroxamic) are of special interest due to their potential for the bridging mode of coordination and mediation of strong magnetic exchange interactions between metal ions (Sachse et al., 2008) and for the preparation of metal complexes with efficient stabilization of unusually high oxidation states of 3d-metal ions (e.g., copper(III) and nickel(III)) (Kanderal et al., 2005). As a part of our research study we present the structure of the title compound, which comprises several donor groups: oxime, hydrazone, azomethine, and pyridine. It has been shown previously that structurally similiar strand ligands form mono- and tetranuclear grid-like assemblies with 3d-metal ions (Moroz et al., 2012).

In the title compound (Fig. 1), the N—N, N—C and C—O bond lengths of the acetohydrazide group (1.3814 (14), 1.3607 (14) and 1.2204 (14) Å respectively) are typical for the protonated amide group (Kanderal et al., 2005; Sachse et al., 2008; Moroz et al., 2012). The NC(=NOH)C(O)NH fragment deviates from the planarity because of a twist between the oxime and the amide groups about the C(8)—C9 bond; the O(1)—C(8)—C(9)—N(4) torsion angle is 168.65 (11)°. The N—O and C—N bond lengths of the oxime group are 1.370 (1) and 1.281 (0) Å, respectively, that is typical for the amide derivatives of 2-hydroxypropanoic acid (Sliva et al., 1997; Mokhir et al., 2002). The pyridine nitrogen atom is situated in an anti-position with respect to the azomethine group. The C—C, C—N and N—N' (1.3314 (15)–1.4098 (12) Å) bond lengths in the pyrazole ring have typical values. The N4—C9—N5—N6 torsion angle is 63.95 (15)°. The C—N and C—C bond lengths in the pyridine ring are normal for 2-substituted pyridine derivatives (Krämer & Fritsky, 2000; Sachse et al., 2008).

In the crystal packing (Fig. 2), the molecules are connected by N—H···O and O—H···N hydrogen bonds (Table 1) to form chains parallel to the c axis, where the amide nitrogen and the oxime oxygen atoms act as donors and the amide oxygen and the pyrazole nitrogen atoms act as acceptors.

Experimental

Synthesis of ethyl 2-[1-(3,5-dimethyl)pyrazolyl]-2-hydroxyiminoacetate: a mixture of ethyl 2-chloro-2-hydroxyiminoacetate synthesized according to Kozikowski et al. (1983) (0.906 g, 6 mmol) and 3,5-dimethylpyrazole (1.152 g, 12 mmol) in 10 ml of chloroform was left for evaporation in the air overnight. The resulting precipitate was recrystallized from water. Yield: 1.12 g (88%).

Synthesis of 2-[1-(3,5-dimethyl)pyrazolyl]-2-hydroxyiminoacetohydrazide: a solution of hydrazine hydrate (0.57 ml, 60%, 10.6 mmol) in water was added to a solution of ethyl 2-[1-(3,5-dimethyl)pyrazolyl]-2-hydroxyiminoacetate (1.12 g, 5.3 mmol) in methanol (30 ml). The resulting mixture was heating under reflux for 1.5 h. After that the solvent was evaporated and the product was recrystallized from methanol. Yield 0.5 g (48%).

Synthesis of 2-[1-(3,5-dimethyl)pyrazolyl]-2-hydroxyimino-N'-[1-(2-pyridyl)ethylidene]acetohydrazide (1): a solution of 2-[1-(3,5-dimethyl)pyrazolyl]-2-hydroxyiminoacetohydrazide (0.5 g, 2.54 mmol) in methanol (30 ml) was treated with 2-acetylpyridine (0.307 g, 2.54 mmol) and the mixture was heated under reflux for 3 h. After that the solvent was evaporated in vacuum and the product was recrystallized from methanol. Yield 0.65 g (85%).

Refinement

The crystal was refined as a racemic twin, with the BASF value refined to 0.4 (8) for 1715 Friedel pairs. The oxime H atom was located in a difference Fourier map and refined as riding with Uiso = 1.5 Ueq(O). The hydrazide H atom was also located in a difference Fourier map but not refined; the N—H distance was constrained to be 0.86 (1) Å and the isotropic displacement parameter was set to 1.5 times that of the N parent atom. All other hydrogen atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.95–0.98 Å, and Uiso = 1.2–1.5 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Crystal packing of the title compound. Hydrogen bonds are indicated by dashed lines. H atoms not involved in H-bonds are omitted for clarity.

Crystal data

C14H16N6O2 F(000) = 632
Mr = 300.33 Dx = 1.350 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2yc Cell parameters from 5439 reflections
a = 24.5792 (6) Å θ = 3.5–32.2°
b = 7.5795 (2) Å µ = 0.10 mm1
c = 8.3072 (2) Å T = 100 K
β = 107.335 (1)° Block, colourless
V = 1477.32 (6) Å3 0.36 × 0.28 × 0.21 mm
Z = 4

Data collection

Bruker Kappa APEXII DUO CCD diffractometer 4395 independent reflections
Radiation source: fine-focus sealed tube 4096 reflections with I > 2σ(I)
Curved graphite crystal monochromator Rint = 0.016
Detector resolution: 16 pixels mm-1 θmax = 32.2°, θmin = 1.7°
φ scans and ω scans with κ offset h = −28→36
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) k = −11→11
Tmin = 0.966, Tmax = 0.980 l = −12→12
8846 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0459P)2 + 0.467P] where P = (Fo2 + 2Fc2)/3
4395 reflections (Δ/σ)max = 0.001
204 parameters Δρmax = 0.36 e Å3
3 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.36481 (4) 0.69023 (11) 0.54259 (10) 0.01537 (16)
O2 0.22703 (4) 0.54704 (12) 0.05549 (11) 0.01825 (18)
H2O 0.2225 0.4597 −0.0165 0.027*
N1 0.56071 (4) 0.19215 (14) 0.65828 (13) 0.01662 (19)
N2 0.42935 (4) 0.41283 (13) 0.53143 (12) 0.01403 (18)
N3 0.38561 (4) 0.46283 (14) 0.39135 (11) 0.01331 (17)
H3N 0.3778 0.4153 0.2937 0.019 (4)*
N4 0.27952 (4) 0.51059 (13) 0.16581 (12) 0.01522 (18)
N5 0.26314 (4) 0.76793 (12) 0.30874 (11) 0.01181 (17)
N6 0.21438 (4) 0.73146 (13) 0.35109 (11) 0.01289 (18)
C1 0.51137 (5) 0.25530 (15) 0.67204 (14) 0.01364 (19)
C2 0.50044 (5) 0.27091 (17) 0.82763 (15) 0.0172 (2)
H2 0.4648 0.3142 0.8333 0.021*
C3 0.54243 (6) 0.22232 (18) 0.97295 (16) 0.0202 (2)
H3 0.5360 0.2318 1.0799 0.024*
C4 0.59418 (5) 0.15935 (17) 0.96004 (15) 0.0185 (2)
H4 0.6240 0.1262 1.0575 0.022*
C5 0.60086 (5) 0.14650 (17) 0.80058 (15) 0.0179 (2)
H5 0.6360 0.1026 0.7916 0.021*
C6 0.46826 (5) 0.30868 (16) 0.51196 (14) 0.01365 (19)
C7 0.47343 (6) 0.24075 (18) 0.34765 (15) 0.0189 (2)
H7A 0.4467 0.1428 0.3084 0.028*
H7B 0.5124 0.1994 0.3634 0.028*
H7C 0.4645 0.3357 0.2638 0.028*
C8 0.35246 (5) 0.59735 (15) 0.41689 (13) 0.01189 (19)
C9 0.29671 (5) 0.62508 (16) 0.28350 (13) 0.01239 (19)
C10 0.19299 (5) 0.88846 (16) 0.37111 (14) 0.0156 (2)
C11 0.13847 (6) 0.89937 (19) 0.41554 (17) 0.0226 (3)
H11A 0.1083 0.9459 0.3192 0.034*
H11B 0.1435 0.9780 0.5126 0.034*
H11C 0.1278 0.7815 0.4440 0.034*
C12 0.22777 (6) 1.02525 (16) 0.34214 (16) 0.0191 (2)
H12 0.2216 1.1485 0.3478 0.023*
C13 0.27257 (5) 0.94425 (15) 0.30399 (15) 0.0156 (2)
C14 0.32359 (6) 1.01682 (18) 0.26595 (17) 0.0227 (3)
H0AA 0.3555 1.0228 0.3700 0.034*
H0AB 0.3151 1.1355 0.2182 0.034*
H0AC 0.3338 0.9401 0.1846 0.034*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0150 (4) 0.0166 (4) 0.0135 (4) 0.0014 (3) 0.0026 (3) −0.0019 (3)
O2 0.0122 (4) 0.0191 (4) 0.0188 (4) 0.0038 (3) −0.0025 (3) −0.0061 (3)
N1 0.0132 (4) 0.0191 (5) 0.0162 (4) 0.0036 (4) 0.0025 (4) 0.0002 (4)
N2 0.0111 (4) 0.0165 (4) 0.0129 (4) 0.0010 (3) 0.0012 (3) 0.0014 (3)
N3 0.0116 (4) 0.0160 (4) 0.0110 (4) 0.0033 (3) 0.0013 (3) −0.0007 (3)
N4 0.0110 (4) 0.0163 (4) 0.0161 (4) 0.0018 (4) 0.0007 (3) −0.0024 (4)
N5 0.0111 (4) 0.0104 (4) 0.0139 (4) 0.0001 (3) 0.0036 (3) −0.0001 (3)
N6 0.0108 (4) 0.0134 (4) 0.0147 (4) 0.0011 (3) 0.0040 (3) 0.0013 (3)
C1 0.0126 (5) 0.0130 (5) 0.0145 (5) 0.0012 (4) 0.0028 (4) 0.0005 (4)
C2 0.0148 (5) 0.0221 (6) 0.0151 (5) 0.0044 (4) 0.0052 (4) 0.0023 (4)
C3 0.0199 (6) 0.0250 (6) 0.0153 (5) 0.0036 (5) 0.0048 (5) 0.0035 (4)
C4 0.0166 (5) 0.0189 (5) 0.0168 (5) 0.0021 (4) 0.0001 (4) 0.0041 (4)
C5 0.0119 (5) 0.0203 (5) 0.0197 (5) 0.0045 (4) 0.0018 (4) 0.0005 (4)
C6 0.0113 (5) 0.0155 (5) 0.0133 (5) 0.0008 (4) 0.0024 (4) 0.0002 (4)
C7 0.0161 (5) 0.0242 (6) 0.0151 (5) 0.0072 (5) 0.0027 (4) −0.0004 (4)
C8 0.0101 (5) 0.0129 (5) 0.0128 (4) 0.0001 (4) 0.0034 (4) 0.0013 (4)
C9 0.0111 (4) 0.0125 (5) 0.0135 (5) 0.0016 (4) 0.0035 (4) 0.0003 (4)
C10 0.0155 (5) 0.0154 (5) 0.0156 (5) 0.0037 (4) 0.0039 (4) −0.0009 (4)
C11 0.0183 (6) 0.0264 (6) 0.0249 (6) 0.0057 (5) 0.0094 (5) −0.0016 (5)
C12 0.0215 (6) 0.0115 (5) 0.0237 (6) 0.0026 (4) 0.0056 (5) −0.0001 (4)
C13 0.0165 (5) 0.0126 (5) 0.0170 (5) −0.0014 (4) 0.0039 (4) 0.0018 (4)
C14 0.0208 (6) 0.0207 (6) 0.0277 (6) −0.0052 (5) 0.0087 (5) 0.0048 (5)

Geometric parameters (Å, º)

O1—C8 1.2204 (14) C4—C5 1.3859 (17)
O2—N4 1.3697 (13) C4—H4 0.9500
O2—H2O 0.8763 C5—H5 0.9500
N1—C1 1.3400 (15) C6—C7 1.4991 (16)
N1—C5 1.3401 (15) C7—H7A 0.9800
N2—C6 1.2870 (15) C7—H7B 0.9800
N2—N3 1.3814 (13) C7—H7C 0.9800
N3—C8 1.3607 (14) C8—C9 1.4982 (15)
N3—H3N 0.8555 C10—C12 1.4094 (18)
N4—C9 1.2811 (15) C10—C11 1.4943 (17)
N5—C13 1.3589 (14) C11—H11A 0.9800
N5—N6 1.3738 (13) C11—H11B 0.9800
N5—C9 1.4144 (14) C11—H11C 0.9800
N6—C10 1.3314 (15) C12—C13 1.3775 (18)
C1—C2 1.4013 (16) C12—H12 0.9500
C1—C6 1.4884 (15) C13—C14 1.4870 (18)
C2—C3 1.3841 (17) C14—H0AA 0.9800
C2—H2 0.9500 C14—H0AB 0.9800
C3—C4 1.3922 (18) C14—H0AC 0.9800
C3—H3 0.9500
N4—O2—H2O 102.0 H7A—C7—H7B 109.5
C1—N1—C5 117.66 (10) C6—C7—H7C 109.5
C6—N2—N3 118.91 (9) H7A—C7—H7C 109.5
C8—N3—N2 115.22 (9) H7B—C7—H7C 109.5
C8—N3—H3N 119.2 O1—C8—N3 123.90 (10)
N2—N3—H3N 125.6 O1—C8—C9 119.44 (10)
C9—N4—O2 113.87 (9) N3—C8—C9 116.61 (9)
C13—N5—N6 112.00 (9) N4—C9—N5 123.87 (10)
C13—N5—C9 129.53 (10) N4—C9—C8 119.37 (10)
N6—N5—C9 118.41 (9) N5—C9—C8 116.30 (9)
C10—N6—N5 105.03 (9) N6—C10—C12 110.72 (10)
N1—C1—C2 122.41 (11) N6—C10—C11 119.80 (11)
N1—C1—C6 116.25 (10) C12—C10—C11 129.47 (11)
C2—C1—C6 121.34 (10) C10—C11—H11A 109.5
C3—C2—C1 118.94 (11) C10—C11—H11B 109.5
C3—C2—H2 120.5 H11A—C11—H11B 109.5
C1—C2—H2 120.5 C10—C11—H11C 109.5
C2—C3—C4 119.01 (11) H11A—C11—H11C 109.5
C2—C3—H3 120.5 H11B—C11—H11C 109.5
C4—C3—H3 120.5 C13—C12—C10 106.18 (10)
C5—C4—C3 117.96 (11) C13—C12—H12 126.9
C5—C4—H4 121.0 C10—C12—H12 126.9
C3—C4—H4 121.0 N5—C13—C12 106.06 (10)
N1—C5—C4 124.00 (11) N5—C13—C14 122.13 (11)
N1—C5—H5 118.0 C12—C13—C14 131.80 (11)
C4—C5—H5 118.0 C13—C14—H0AA 109.5
N2—C6—C1 114.35 (9) C13—C14—H0AB 109.5
N2—C6—C7 126.36 (10) H0AA—C14—H0AB 109.5
C1—C6—C7 119.29 (10) C13—C14—H0AC 109.5
C6—C7—H7A 109.5 H0AA—C14—H0AC 109.5
C6—C7—H7B 109.5 H0AB—C14—H0AC 109.5

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2O···N6i 0.88 1.79 2.6686 (13) 175
N3—H3N···O1i 0.86 2.17 3.0196 (13) 174

Symmetry code: (i) x, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5011).

References

  1. Brandenburg, K. (2009). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2009). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2010). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Kanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437. [DOI] [PubMed]
  5. Kozikowski, A. P. & Adamczyk, M. (1983). J. Org. Chem. 48, 366–372.
  6. Krämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505–3510.
  7. Mokhir, A. A., Gumienna-Kontecka, E., Swiatek-Kozlowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Y. (2002). Inorg. Chim. Acta, 329, 113–121.
  8. Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447. [DOI] [PubMed]
  9. Sachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800–806.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287–294.
  12. Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068.
  13. Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005). Dalton Trans. pp. 27–29. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812045412/rz5011sup1.cif

e-68-o3381-sup1.cif (16.9KB, cif)

Supplementary material file. DOI: 10.1107/S1600536812045412/rz5011Isup2.mol

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812045412/rz5011Isup3.hkl

e-68-o3381-Isup3.hkl (215.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812045412/rz5011Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES