Abstract
The title 2:1 co-crystal, 2C12H10N2·C8H6O4, crystallizes with one molecule of 4-[(E)-2-(pyridin-2-yl)ethenyl]pyridine (A) and one half-molecule of terephthalic acid (B) in the asymmetric unit. In the crystal, the components are linked through heterodimeric COOH⋯Npyridine synthons, forming linear aggregates of composition –A–B–A–B–. Further linkage through weak C—H⋯O and C—H⋯π interactions gives two-dimensional hydrogen-bonded undulating sheets propagating in the [100] and [010] directions. These layers are connected through additional weak C—H⋯O contacts, forming a three-dimensional structure.
Related literature
For reports on supramolecular crystal engineering and potential applications of co-crystals, see: Desiraju (1995 ▶); Simon & Bassoul (2000 ▶); Bhogala & Nangia (2003 ▶); Weyna et al. (2009 ▶); Yan et al. (2012 ▶). For background to related co-crystals, see: Santra et al. (2008 ▶); Moon & Park (2012 ▶); Ebenezer & Muthiah (2012 ▶).
Experimental
Crystal data
C12H10N2·0.5C8H6O4
M r = 265.28
Monoclinic,
a = 6.3821 (8) Å
b = 32.301 (4) Å
c = 6.8721 (8) Å
β = 111.440 (2)°
V = 1318.6 (3) Å3
Z = 4
Mo Kα radiation
μ = 0.09 mm−1
T = 293 K
0.48 × 0.41 × 0.34 mm
Data collection
Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996 ▶) T min = 0.96, T max = 0.97
12715 measured reflections
2328 independent reflections
2119 reflections with I > 2σ(I)
R int = 0.033
Refinement
R[F 2 > 2σ(F 2)] = 0.055
wR(F 2) = 0.149
S = 1.17
2328 reflections
184 parameters
1 restraint
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.14 e Å−3
Δρmin = −0.20 e Å−3
Data collection: SMART (Bruker, 2000 ▶); cell refinement: SAINT-Plus (Bruker 2001 ▶); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 (Farrugia, 2012 ▶) and Mercury (Macrae et al. 2008 ▶); software used to prepare material for publication: publCIF (Westrip, 2010 ▶).
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812046284/su2525sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812046284/su2525Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536812046284/su2525Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
Cg is the centroid of the N2/C12–C16 pyridine ring.
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O1—H1′⋯N1i | 0.84 | 1.77 | 2.604 (2) | 177 |
| C9—H9⋯O2ii | 0.93 | 2.67 | 3.285 (3) | 125 |
| C13—H13⋯O2iii | 0.93 | 2.52 | 3.396 (2) | 157 |
| C5—H5⋯O2iv | 0.93 | 2.64 | 3.135 (2) | 114 |
| C16—H16⋯Cg v | 0.93 | 2.86 | 3.627 (3) | 141 |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
; (v)
.
Acknowledgments
This work was supported financially by the Universidad Autónoma de Sinaloa (PROFAPI 2011/048). PCM thanks the Consejo Nacional de Ciencia y Tecnologia (CONACYT) for support in the form of a scholarship.
supplementary crystallographic information
Comment
Supramolecular crystal engineering has attracted growing interest over the past few decades because of its importance in biological systems, molecular recognition (Simon et al., 2000), pharmaceutical chemistry (Weyna et al., 2009) and materials chemistry (Yan et al., 2012). Aromatic carboxylic acids form reliable supramolecular synthons for the construction of novel organic networks by hydrogen bonding and π–π interactions (Desiraju, 1995), and numerous studies have focused on hydrogen bonding between carboxylic acids and pyridine molecules (Bhogala & Nangia, 2003; Santra et al., 2008; Moon & Park, 2012; Ebenezer & Muthiah, 2012). Herein, we report on the solid-state structure of a 2:1 co-crystal formed between an asymmetric bipyridine [4-((E)-2-(pyridin-2-yl)ethenyl)pyridine] and a symmetric dicarboxylic acid [terephthalic acid].
The molecular structure of the title compound is shown in Fig. 1. The asymmetric unit contains one molecule of 4-((E)-2-(pyridin-2-yl)ethenyl)pyridine and half a molecule of terephthalic acid located on a crystallographic inversion center. Both components have almost planar molecular structures as seen from the C10—C11—C12—N2 torsion angle of -4.2 (3)° for the bipyridine molecule and the O1—C4—C1—C2 torsion angle of -6.0 (3)° for the terephthalic acid.
In the crystal lattice, each terephthalic acid is linked to two bipyridine molecules through intermolecular O—H···N and C—H···O interactions giving the well known heterodimeric COOH···Npyridine synthon. The so formed linear aggregates are connected through additional weak C—H···O contacts to generate tapes parallel to the (1–41) series of planes, which through C—H···π contacts generate undulating two-dimensional supramolecular layers (Fig. 2 and Table 1). In the third dimension, these layers are interconnected through additional weak C—H···O contacts. Interestingly, the 2-pyridine nitrogen atom is not involved in short intermolecular hydrogen bonding interactions.
Experimental
0.200 g (1.10 mmol) of 4-((E)-2-(pyridin-2-yl)ethenyl)pyridine and 0.180 g (1.10 mmol) of terephthalic acid were ground in a mortar for 20 min after adding 3 drops of CH3OH. The resulting powder was then dissolved in 10 ml of CH3OH and kept for crystallization by slow evaporation of the solvent at ambient conditions to give colourless block-like crystals, suitable for single-crystal X-ray diffraction analysis, after one week. Spectroscopic and TGA data for the title compound are available in the archived CIF.
Refinement
H atoms bonded to C atoms were positioned geometrically and constrained using the riding-model approximation [aryl C—H = 0.93 A and Uiso(H) = 1.2Ueq(C)]. The H atom bonded to O was initially located in a difference Fourier map, then the position was refined with the O—H distance restraint of 0.84 (1) Å with Uiso(H) = 1.5Ueq(O). One reflection that was located behind the beam stop has been omitted during the refinement (020).
Figures
Fig. 1.

The molecular structures of the components in the title compound, showing the atom numbering. Displacement ellipsoids are drawn at the 50% probability level. [symmetry code: (i) -x + 2, -y, -z + 1].
Fig. 2.
View of the two-dimensional supramolecular layer formed through O—H···N, C—H···O and C—H···π interactions (dashed lines; see Table 1 for details), in the crystal structure of the title compound.
Crystal data
| C12H10N2·0.5C8H6O4 | F(000) = 556 |
| Mr = 265.28 | Dx = 1.336 Mg m−3 |
| Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2yn | Cell parameters from 4971 reflections |
| a = 6.3821 (8) Å | θ = 2.5–27.1° |
| b = 32.301 (4) Å | µ = 0.09 mm−1 |
| c = 6.8721 (8) Å | T = 293 K |
| β = 111.440 (2)° | Block, colourless |
| V = 1318.6 (3) Å3 | 0.48 × 0.41 × 0.34 mm |
| Z = 4 |
Data collection
| Bruker SMART CCD area-detector diffractometer | 2328 independent reflections |
| Radiation source: fine-focus sealed tube | 2119 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.033 |
| phi and ω scans | θmax = 25.0°, θmin = 2.5° |
| Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −7→7 |
| Tmin = 0.96, Tmax = 0.97 | k = −38→38 |
| 12715 measured reflections | l = −8→8 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.149 | H atoms treated by a mixture of independent and constrained refinement |
| S = 1.17 | w = 1/[σ2(Fo2) + (0.0769P)2 + 0.2452P] where P = (Fo2 + 2Fc2)/3 |
| 2328 reflections | (Δ/σ)max < 0.001 |
| 184 parameters | Δρmax = 0.14 e Å−3 |
| 1 restraint | Δρmin = −0.20 e Å−3 |
Special details
| Experimental. Spectroscopic and TGA data for the title compound: IR (KBr): 3056, 2944, 1706, 1683, 1606, 1581, 1504, 1425, 1290 y 731 cm-1. 1H-RMN (200 MHz, DMSO-d6, TMS): δ 8.59 (m, 3H), 8.04 (s, 4H), 7.83 (td, J = 0.8, 4 Hz, 1H), 7.61 (m, 5H), 7.32 (m, 1H). TGA Calcd. for 2 C12H10N2: 68.69. Found: 69.27% (303 - 533 K). |
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.7604 (3) | 0.03567 (5) | 0.8732 (2) | 0.0626 (4) | |
| H1' | 0.752 (4) | 0.0508 (7) | 0.969 (3) | 0.094* | |
| O2 | 1.0571 (2) | 0.07552 (4) | 0.9137 (2) | 0.0646 (4) | |
| C1 | 0.9678 (3) | 0.02216 (5) | 0.6602 (3) | 0.0419 (4) | |
| C2 | 0.8138 (3) | −0.00755 (6) | 0.5490 (3) | 0.0497 (5) | |
| H2 | 0.6876 | −0.0128 | 0.5824 | 0.060* | |
| C3 | 1.1549 (3) | 0.02934 (6) | 0.6094 (3) | 0.0502 (5) | |
| H3 | 1.2603 | 0.0491 | 0.6830 | 0.060* | |
| C4 | 0.9339 (3) | 0.04711 (6) | 0.8289 (3) | 0.0478 (5) | |
| N1 | 0.7178 (3) | 0.08162 (5) | 0.1678 (2) | 0.0525 (4) | |
| N2 | 0.6102 (3) | 0.20912 (5) | 0.9682 (3) | 0.0577 (5) | |
| C5 | 0.5534 (3) | 0.07399 (6) | 0.2373 (3) | 0.0525 (5) | |
| H5 | 0.4559 | 0.0521 | 0.1784 | 0.063* | |
| C6 | 0.5203 (3) | 0.09677 (6) | 0.3915 (3) | 0.0515 (5) | |
| H6 | 0.4020 | 0.0903 | 0.4346 | 0.062* | |
| C7 | 0.6625 (3) | 0.12946 (6) | 0.4837 (3) | 0.0471 (5) | |
| C8 | 0.8332 (3) | 0.13732 (7) | 0.4096 (3) | 0.0567 (5) | |
| H8 | 0.9330 | 0.1590 | 0.4651 | 0.068* | |
| C9 | 0.8553 (4) | 0.11300 (7) | 0.2539 (3) | 0.0580 (5) | |
| H9 | 0.9714 | 0.1188 | 0.2067 | 0.070* | |
| C10 | 0.6360 (3) | 0.15554 (6) | 0.6476 (3) | 0.0519 (5) | |
| H10 | 0.7328 | 0.1781 | 0.6911 | 0.062* | |
| C11 | 0.4900 (3) | 0.15052 (6) | 0.7397 (3) | 0.0509 (5) | |
| H11 | 0.3948 | 0.1277 | 0.6996 | 0.061* | |
| C12 | 0.4641 (3) | 0.17767 (5) | 0.8998 (3) | 0.0472 (5) | |
| C13 | 0.2917 (3) | 0.17128 (6) | 0.9726 (3) | 0.0545 (5) | |
| H13 | 0.1941 | 0.1490 | 0.9238 | 0.065* | |
| C14 | 0.2652 (4) | 0.19789 (7) | 1.1171 (3) | 0.0628 (6) | |
| H14 | 0.1481 | 0.1942 | 1.1654 | 0.075* | |
| C15 | 0.4136 (4) | 0.22994 (7) | 1.1891 (3) | 0.0656 (6) | |
| H15 | 0.4008 | 0.2484 | 1.2880 | 0.079* | |
| C16 | 0.5813 (4) | 0.23397 (7) | 1.1110 (4) | 0.0682 (6) | |
| H16 | 0.6827 | 0.2557 | 1.1613 | 0.082* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0692 (9) | 0.0688 (10) | 0.0642 (9) | −0.0138 (7) | 0.0414 (8) | −0.0204 (7) |
| O2 | 0.0679 (9) | 0.0625 (9) | 0.0677 (9) | −0.0156 (7) | 0.0300 (8) | −0.0246 (7) |
| C1 | 0.0449 (10) | 0.0379 (9) | 0.0434 (10) | 0.0019 (7) | 0.0166 (8) | 0.0039 (7) |
| C2 | 0.0455 (10) | 0.0521 (11) | 0.0588 (11) | −0.0072 (8) | 0.0276 (9) | −0.0060 (9) |
| C3 | 0.0508 (11) | 0.0474 (10) | 0.0553 (11) | −0.0111 (8) | 0.0228 (9) | −0.0094 (8) |
| C4 | 0.0498 (10) | 0.0485 (11) | 0.0452 (10) | 0.0027 (8) | 0.0174 (8) | 0.0011 (8) |
| N1 | 0.0618 (10) | 0.0534 (9) | 0.0457 (9) | 0.0075 (8) | 0.0237 (8) | 0.0007 (7) |
| N2 | 0.0646 (11) | 0.0492 (9) | 0.0602 (10) | −0.0050 (8) | 0.0238 (8) | −0.0120 (8) |
| C5 | 0.0594 (12) | 0.0499 (11) | 0.0494 (11) | −0.0002 (9) | 0.0215 (9) | −0.0047 (8) |
| C6 | 0.0560 (11) | 0.0508 (11) | 0.0521 (11) | −0.0006 (9) | 0.0250 (9) | −0.0039 (8) |
| C7 | 0.0525 (11) | 0.0440 (10) | 0.0443 (10) | 0.0072 (8) | 0.0170 (8) | 0.0036 (8) |
| C8 | 0.0592 (12) | 0.0568 (12) | 0.0559 (11) | −0.0050 (9) | 0.0232 (10) | −0.0035 (9) |
| C9 | 0.0620 (12) | 0.0632 (13) | 0.0576 (12) | 0.0011 (10) | 0.0323 (10) | 0.0025 (10) |
| C10 | 0.0596 (11) | 0.0439 (10) | 0.0522 (11) | −0.0025 (8) | 0.0205 (9) | −0.0047 (8) |
| C11 | 0.0594 (11) | 0.0433 (10) | 0.0499 (11) | −0.0015 (9) | 0.0199 (9) | −0.0059 (8) |
| C12 | 0.0555 (11) | 0.0399 (10) | 0.0439 (10) | 0.0051 (8) | 0.0154 (8) | 0.0020 (7) |
| C13 | 0.0643 (12) | 0.0461 (11) | 0.0548 (11) | 0.0005 (9) | 0.0239 (10) | 0.0014 (8) |
| C14 | 0.0770 (14) | 0.0600 (13) | 0.0610 (12) | 0.0113 (11) | 0.0367 (11) | 0.0038 (10) |
| C15 | 0.0885 (16) | 0.0541 (12) | 0.0562 (12) | 0.0142 (11) | 0.0288 (11) | −0.0072 (10) |
| C16 | 0.0810 (15) | 0.0527 (12) | 0.0669 (13) | −0.0062 (11) | 0.0224 (12) | −0.0188 (10) |
Geometric parameters (Å, º)
| O1—C4 | 1.305 (2) | C7—C8 | 1.384 (3) |
| O1—H1' | 0.8401 (10) | C7—C10 | 1.465 (3) |
| O2—C4 | 1.210 (2) | C8—C9 | 1.376 (3) |
| C1—C3 | 1.381 (2) | C8—H8 | 0.9300 |
| C1—C2 | 1.386 (3) | C9—H9 | 0.9300 |
| C1—C4 | 1.491 (3) | C10—C11 | 1.314 (3) |
| C2—C3i | 1.371 (3) | C10—H10 | 0.9300 |
| C2—H2 | 0.9300 | C11—C12 | 1.463 (3) |
| C3—C2i | 1.371 (3) | C11—H11 | 0.9300 |
| C3—H3 | 0.9300 | C12—C13 | 1.380 (3) |
| N1—C5 | 1.325 (2) | C13—C14 | 1.369 (3) |
| N1—C9 | 1.330 (3) | C13—H13 | 0.9300 |
| N2—C16 | 1.332 (3) | C14—C15 | 1.368 (3) |
| N2—C12 | 1.342 (2) | C14—H14 | 0.9300 |
| C5—C6 | 1.369 (3) | C15—C16 | 1.368 (3) |
| C5—H5 | 0.9300 | C15—H15 | 0.9300 |
| C6—C7 | 1.386 (3) | C16—H16 | 0.9300 |
| C6—H6 | 0.9300 | ||
| C4—O1—H1' | 108.9 (19) | C7—C8—H8 | 120.0 |
| C3—C1—C2 | 118.76 (17) | N1—C9—C8 | 122.86 (19) |
| C3—C1—C4 | 119.37 (16) | N1—C9—H9 | 118.6 |
| C2—C1—C4 | 121.86 (16) | C8—C9—H9 | 118.6 |
| C3i—C2—C1 | 120.91 (17) | C11—C10—C7 | 126.94 (18) |
| C3i—C2—H2 | 119.5 | C11—C10—H10 | 116.5 |
| C1—C2—H2 | 119.5 | C7—C10—H10 | 116.5 |
| C2i—C3—C1 | 120.33 (17) | C10—C11—C12 | 125.68 (18) |
| C2i—C3—H3 | 119.8 | C10—C11—H11 | 117.2 |
| C1—C3—H3 | 119.8 | C12—C11—H11 | 117.2 |
| O2—C4—O1 | 124.02 (17) | N2—C12—C13 | 122.00 (17) |
| O2—C4—C1 | 122.08 (17) | N2—C12—C11 | 117.51 (17) |
| O1—C4—C1 | 113.89 (16) | C13—C12—C11 | 120.47 (17) |
| C5—N1—C9 | 117.55 (16) | C14—C13—C12 | 119.7 (2) |
| C16—N2—C12 | 116.65 (18) | C14—C13—H13 | 120.2 |
| N1—C5—C6 | 123.07 (18) | C12—C13—H13 | 120.2 |
| N1—C5—H5 | 118.5 | C15—C14—C13 | 119.0 (2) |
| C6—C5—H5 | 118.5 | C15—C14—H14 | 120.5 |
| C5—C6—C7 | 120.20 (18) | C13—C14—H14 | 120.5 |
| C5—C6—H6 | 119.9 | C14—C15—C16 | 117.86 (19) |
| C7—C6—H6 | 119.9 | C14—C15—H15 | 121.1 |
| C8—C7—C6 | 116.35 (17) | C16—C15—H15 | 121.1 |
| C8—C7—C10 | 120.33 (18) | N2—C16—C15 | 124.8 (2) |
| C6—C7—C10 | 123.31 (17) | N2—C16—H16 | 117.6 |
| C9—C8—C7 | 119.96 (19) | C15—C16—H16 | 117.6 |
| C9—C8—H8 | 120.0 | ||
| C3—C1—C2—C3i | −0.4 (3) | C7—C8—C9—N1 | 0.2 (3) |
| C4—C1—C2—C3i | 178.17 (17) | C8—C7—C10—C11 | −176.30 (19) |
| C2—C1—C3—C2i | 0.4 (3) | C6—C7—C10—C11 | 5.1 (3) |
| C4—C1—C3—C2i | −178.21 (17) | C7—C10—C11—C12 | −178.50 (17) |
| C3—C1—C4—O2 | 5.2 (3) | C16—N2—C12—C13 | 0.2 (3) |
| C2—C1—C4—O2 | −173.37 (18) | C16—N2—C12—C11 | 178.75 (18) |
| C3—C1—C4—O1 | −175.43 (17) | C10—C11—C12—N2 | −4.2 (3) |
| C2—C1—C4—O1 | 6.0 (3) | C10—C11—C12—C13 | 174.40 (19) |
| C9—N1—C5—C6 | 0.0 (3) | N2—C12—C13—C14 | 0.8 (3) |
| N1—C5—C6—C7 | −0.3 (3) | C11—C12—C13—C14 | −177.69 (18) |
| C5—C6—C7—C8 | 0.5 (3) | C12—C13—C14—C15 | −1.2 (3) |
| C5—C6—C7—C10 | 179.21 (18) | C13—C14—C15—C16 | 0.5 (3) |
| C6—C7—C8—C9 | −0.5 (3) | C12—N2—C16—C15 | −0.9 (3) |
| C10—C7—C8—C9 | −179.21 (18) | C14—C15—C16—N2 | 0.6 (4) |
| C5—N1—C9—C8 | 0.1 (3) |
Symmetry code: (i) −x+2, −y, −z+1.
Hydrogen-bond geometry (Å, º)
Cg is the centroid of the N2/C12–C16 pyridine ring.
| D—H···A | D—H | H···A | D···A | D—H···A |
| O1—H1′···N1ii | 0.84 | 1.77 | 2.604 (2) | 177 |
| C9—H9···O2iii | 0.93 | 2.67 | 3.285 (3) | 125 |
| C13—H13···O2iv | 0.93 | 2.52 | 3.396 (2) | 157 |
| C5—H5···O2v | 0.93 | 2.64 | 3.135 (2) | 114 |
| C16—H16···Cgvi | 0.93 | 2.86 | 3.627 (3) | 141 |
Symmetry codes: (ii) x, y, z+1; (iii) x, y, z−1; (iv) x−1, y, z; (v) x−1, y, z−1; (vi) x+1/2, −y+1/2, z+1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2525).
References
- Bhogala, B. R. & Nangia, A. (2003). Cryst. Growth Des. 3, 547–554.
- Bruker (2000). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
- Desiraju, G. R. (1995). Angew. Chem. Int. Ed. 34, 2311–2327.
- Ebenezer, S. & Muthiah, P. T. (2012). Cryst. Growth Des. 12, 3766–3785.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Moon, S.-H. & Park, K.-M. (2012). Acta Cryst. E68, o1201. [DOI] [PMC free article] [PubMed]
- Santra, R., Ghosh, N. & Biradha, K. (2008). New J. Chem. 32, 1673–1676.
- Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Simon, J. & Bassoul, P. (2000). In Design of Molecular Materials: Supramolecular Engineering Berlin: Wiley-VCH.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Weyna, D. R., Shattock, T., Vishweshwar, P. & Zaworotko, M. J. (2009). Cryst. Growth Des. 9, 1106–1123.
- Yan, D., Delori, A., Lloyd, G. O., Patel, B., Friscic, T., Day, G. M., Bucar, D. J., Jones, W., Min Wei, J. L., Evans, D. G. & Duan, X. (2012). CrystEngComm, 14, 5121–5123.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812046284/su2525sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812046284/su2525Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536812046284/su2525Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report

