Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 17;68(Pt 12):o3383–o3384. doi: 10.1107/S1600536812046284

4-[(E)-2-(Pyridin-2-yl)ethen­yl]pyridine–terephthalic acid (2/1)

Paola Castro-Montes a, Jorge A Guerrero-Alvarez b, Herbert Hopfl b, Jose J Campos-Gaxiola a, Adriana Cruz-Enriquez a,*
PMCID: PMC3588979  PMID: 23476215

Abstract

The title 2:1 co-crystal, 2C12H10N2·C8H6O4, crystallizes with one mol­ecule of 4-[(E)-2-(pyridin-2-yl)ethen­yl]pyridine (A) and one half-mol­ecule of terephthalic acid (B) in the asymmetric unit. In the crystal, the components are linked through heterodimeric COOH⋯Npyridine synthons, forming linear aggregates of composition –ABAB–. Further linkage through weak C—H⋯O and C—H⋯π inter­actions gives two-dimensional hydrogen-bonded undulating sheets propagating in the [100] and [010] directions. These layers are connected through additional weak C—H⋯O contacts, forming a three-dimensional structure.

Related literature  

For reports on supra­molecular crystal engineering and potential applications of co-crystals, see: Desiraju (1995); Simon & Bassoul (2000); Bhogala & Nangia (2003); Weyna et al. (2009); Yan et al. (2012). For background to related co-crystals, see: Santra et al. (2008); Moon & Park (2012); Ebenezer & Muthiah (2012).graphic file with name e-68-o3383-scheme1.jpg

Experimental  

Crystal data  

  • C12H10N2·0.5C8H6O4

  • M r = 265.28

  • Monoclinic, Inline graphic

  • a = 6.3821 (8) Å

  • b = 32.301 (4) Å

  • c = 6.8721 (8) Å

  • β = 111.440 (2)°

  • V = 1318.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.48 × 0.41 × 0.34 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.96, T max = 0.97

  • 12715 measured reflections

  • 2328 independent reflections

  • 2119 reflections with I > 2σ(I)

  • R int = 0.033

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.149

  • S = 1.17

  • 2328 reflections

  • 184 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al. 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812046284/su2525sup1.cif

e-68-o3383-sup1.cif (18.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812046284/su2525Isup2.hkl

e-68-o3383-Isup2.hkl (114.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812046284/su2525Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the N2/C12–C16 pyridine ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1′⋯N1i 0.84 1.77 2.604 (2) 177
C9—H9⋯O2ii 0.93 2.67 3.285 (3) 125
C13—H13⋯O2iii 0.93 2.52 3.396 (2) 157
C5—H5⋯O2iv 0.93 2.64 3.135 (2) 114
C16—H16⋯Cg v 0.93 2.86 3.627 (3) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

This work was supported financially by the Universidad Autónoma de Sinaloa (PROFAPI 2011/048). PCM thanks the Consejo Nacional de Ciencia y Tecnologia (CONACYT) for support in the form of a scholarship.

supplementary crystallographic information

Comment

Supramolecular crystal engineering has attracted growing interest over the past few decades because of its importance in biological systems, molecular recognition (Simon et al., 2000), pharmaceutical chemistry (Weyna et al., 2009) and materials chemistry (Yan et al., 2012). Aromatic carboxylic acids form reliable supramolecular synthons for the construction of novel organic networks by hydrogen bonding and π–π interactions (Desiraju, 1995), and numerous studies have focused on hydrogen bonding between carboxylic acids and pyridine molecules (Bhogala & Nangia, 2003; Santra et al., 2008; Moon & Park, 2012; Ebenezer & Muthiah, 2012). Herein, we report on the solid-state structure of a 2:1 co-crystal formed between an asymmetric bipyridine [4-((E)-2-(pyridin-2-yl)ethenyl)pyridine] and a symmetric dicarboxylic acid [terephthalic acid].

The molecular structure of the title compound is shown in Fig. 1. The asymmetric unit contains one molecule of 4-((E)-2-(pyridin-2-yl)ethenyl)pyridine and half a molecule of terephthalic acid located on a crystallographic inversion center. Both components have almost planar molecular structures as seen from the C10—C11—C12—N2 torsion angle of -4.2 (3)° for the bipyridine molecule and the O1—C4—C1—C2 torsion angle of -6.0 (3)° for the terephthalic acid.

In the crystal lattice, each terephthalic acid is linked to two bipyridine molecules through intermolecular O—H···N and C—H···O interactions giving the well known heterodimeric COOH···Npyridine synthon. The so formed linear aggregates are connected through additional weak C—H···O contacts to generate tapes parallel to the (1–41) series of planes, which through C—H···π contacts generate undulating two-dimensional supramolecular layers (Fig. 2 and Table 1). In the third dimension, these layers are interconnected through additional weak C—H···O contacts. Interestingly, the 2-pyridine nitrogen atom is not involved in short intermolecular hydrogen bonding interactions.

Experimental

0.200 g (1.10 mmol) of 4-((E)-2-(pyridin-2-yl)ethenyl)pyridine and 0.180 g (1.10 mmol) of terephthalic acid were ground in a mortar for 20 min after adding 3 drops of CH3OH. The resulting powder was then dissolved in 10 ml of CH3OH and kept for crystallization by slow evaporation of the solvent at ambient conditions to give colourless block-like crystals, suitable for single-crystal X-ray diffraction analysis, after one week. Spectroscopic and TGA data for the title compound are available in the archived CIF.

Refinement

H atoms bonded to C atoms were positioned geometrically and constrained using the riding-model approximation [aryl C—H = 0.93 A and Uiso(H) = 1.2Ueq(C)]. The H atom bonded to O was initially located in a difference Fourier map, then the position was refined with the O—H distance restraint of 0.84 (1) Å with Uiso(H) = 1.5Ueq(O). One reflection that was located behind the beam stop has been omitted during the refinement (020).

Figures

Fig. 1.

Fig. 1.

The molecular structures of the components in the title compound, showing the atom numbering. Displacement ellipsoids are drawn at the 50% probability level. [symmetry code: (i) -x + 2, -y, -z + 1].

Fig. 2.

Fig. 2.

View of the two-dimensional supramolecular layer formed through O—H···N, C—H···O and C—H···π interactions (dashed lines; see Table 1 for details), in the crystal structure of the title compound.

Crystal data

C12H10N2·0.5C8H6O4 F(000) = 556
Mr = 265.28 Dx = 1.336 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4971 reflections
a = 6.3821 (8) Å θ = 2.5–27.1°
b = 32.301 (4) Å µ = 0.09 mm1
c = 6.8721 (8) Å T = 293 K
β = 111.440 (2)° Block, colourless
V = 1318.6 (3) Å3 0.48 × 0.41 × 0.34 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 2328 independent reflections
Radiation source: fine-focus sealed tube 2119 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.033
phi and ω scans θmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −7→7
Tmin = 0.96, Tmax = 0.97 k = −38→38
12715 measured reflections l = −8→8

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149 H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.0769P)2 + 0.2452P] where P = (Fo2 + 2Fc2)/3
2328 reflections (Δ/σ)max < 0.001
184 parameters Δρmax = 0.14 e Å3
1 restraint Δρmin = −0.20 e Å3

Special details

Experimental. Spectroscopic and TGA data for the title compound: IR (KBr): 3056, 2944, 1706, 1683, 1606, 1581, 1504, 1425, 1290 y 731 cm-1. 1H-RMN (200 MHz, DMSO-d6, TMS): δ 8.59 (m, 3H), 8.04 (s, 4H), 7.83 (td, J = 0.8, 4 Hz, 1H), 7.61 (m, 5H), 7.32 (m, 1H). TGA Calcd. for 2 C12H10N2: 68.69. Found: 69.27% (303 - 533 K).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.7604 (3) 0.03567 (5) 0.8732 (2) 0.0626 (4)
H1' 0.752 (4) 0.0508 (7) 0.969 (3) 0.094*
O2 1.0571 (2) 0.07552 (4) 0.9137 (2) 0.0646 (4)
C1 0.9678 (3) 0.02216 (5) 0.6602 (3) 0.0419 (4)
C2 0.8138 (3) −0.00755 (6) 0.5490 (3) 0.0497 (5)
H2 0.6876 −0.0128 0.5824 0.060*
C3 1.1549 (3) 0.02934 (6) 0.6094 (3) 0.0502 (5)
H3 1.2603 0.0491 0.6830 0.060*
C4 0.9339 (3) 0.04711 (6) 0.8289 (3) 0.0478 (5)
N1 0.7178 (3) 0.08162 (5) 0.1678 (2) 0.0525 (4)
N2 0.6102 (3) 0.20912 (5) 0.9682 (3) 0.0577 (5)
C5 0.5534 (3) 0.07399 (6) 0.2373 (3) 0.0525 (5)
H5 0.4559 0.0521 0.1784 0.063*
C6 0.5203 (3) 0.09677 (6) 0.3915 (3) 0.0515 (5)
H6 0.4020 0.0903 0.4346 0.062*
C7 0.6625 (3) 0.12946 (6) 0.4837 (3) 0.0471 (5)
C8 0.8332 (3) 0.13732 (7) 0.4096 (3) 0.0567 (5)
H8 0.9330 0.1590 0.4651 0.068*
C9 0.8553 (4) 0.11300 (7) 0.2539 (3) 0.0580 (5)
H9 0.9714 0.1188 0.2067 0.070*
C10 0.6360 (3) 0.15554 (6) 0.6476 (3) 0.0519 (5)
H10 0.7328 0.1781 0.6911 0.062*
C11 0.4900 (3) 0.15052 (6) 0.7397 (3) 0.0509 (5)
H11 0.3948 0.1277 0.6996 0.061*
C12 0.4641 (3) 0.17767 (5) 0.8998 (3) 0.0472 (5)
C13 0.2917 (3) 0.17128 (6) 0.9726 (3) 0.0545 (5)
H13 0.1941 0.1490 0.9238 0.065*
C14 0.2652 (4) 0.19789 (7) 1.1171 (3) 0.0628 (6)
H14 0.1481 0.1942 1.1654 0.075*
C15 0.4136 (4) 0.22994 (7) 1.1891 (3) 0.0656 (6)
H15 0.4008 0.2484 1.2880 0.079*
C16 0.5813 (4) 0.23397 (7) 1.1110 (4) 0.0682 (6)
H16 0.6827 0.2557 1.1613 0.082*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0692 (9) 0.0688 (10) 0.0642 (9) −0.0138 (7) 0.0414 (8) −0.0204 (7)
O2 0.0679 (9) 0.0625 (9) 0.0677 (9) −0.0156 (7) 0.0300 (8) −0.0246 (7)
C1 0.0449 (10) 0.0379 (9) 0.0434 (10) 0.0019 (7) 0.0166 (8) 0.0039 (7)
C2 0.0455 (10) 0.0521 (11) 0.0588 (11) −0.0072 (8) 0.0276 (9) −0.0060 (9)
C3 0.0508 (11) 0.0474 (10) 0.0553 (11) −0.0111 (8) 0.0228 (9) −0.0094 (8)
C4 0.0498 (10) 0.0485 (11) 0.0452 (10) 0.0027 (8) 0.0174 (8) 0.0011 (8)
N1 0.0618 (10) 0.0534 (9) 0.0457 (9) 0.0075 (8) 0.0237 (8) 0.0007 (7)
N2 0.0646 (11) 0.0492 (9) 0.0602 (10) −0.0050 (8) 0.0238 (8) −0.0120 (8)
C5 0.0594 (12) 0.0499 (11) 0.0494 (11) −0.0002 (9) 0.0215 (9) −0.0047 (8)
C6 0.0560 (11) 0.0508 (11) 0.0521 (11) −0.0006 (9) 0.0250 (9) −0.0039 (8)
C7 0.0525 (11) 0.0440 (10) 0.0443 (10) 0.0072 (8) 0.0170 (8) 0.0036 (8)
C8 0.0592 (12) 0.0568 (12) 0.0559 (11) −0.0050 (9) 0.0232 (10) −0.0035 (9)
C9 0.0620 (12) 0.0632 (13) 0.0576 (12) 0.0011 (10) 0.0323 (10) 0.0025 (10)
C10 0.0596 (11) 0.0439 (10) 0.0522 (11) −0.0025 (8) 0.0205 (9) −0.0047 (8)
C11 0.0594 (11) 0.0433 (10) 0.0499 (11) −0.0015 (9) 0.0199 (9) −0.0059 (8)
C12 0.0555 (11) 0.0399 (10) 0.0439 (10) 0.0051 (8) 0.0154 (8) 0.0020 (7)
C13 0.0643 (12) 0.0461 (11) 0.0548 (11) 0.0005 (9) 0.0239 (10) 0.0014 (8)
C14 0.0770 (14) 0.0600 (13) 0.0610 (12) 0.0113 (11) 0.0367 (11) 0.0038 (10)
C15 0.0885 (16) 0.0541 (12) 0.0562 (12) 0.0142 (11) 0.0288 (11) −0.0072 (10)
C16 0.0810 (15) 0.0527 (12) 0.0669 (13) −0.0062 (11) 0.0224 (12) −0.0188 (10)

Geometric parameters (Å, º)

O1—C4 1.305 (2) C7—C8 1.384 (3)
O1—H1' 0.8401 (10) C7—C10 1.465 (3)
O2—C4 1.210 (2) C8—C9 1.376 (3)
C1—C3 1.381 (2) C8—H8 0.9300
C1—C2 1.386 (3) C9—H9 0.9300
C1—C4 1.491 (3) C10—C11 1.314 (3)
C2—C3i 1.371 (3) C10—H10 0.9300
C2—H2 0.9300 C11—C12 1.463 (3)
C3—C2i 1.371 (3) C11—H11 0.9300
C3—H3 0.9300 C12—C13 1.380 (3)
N1—C5 1.325 (2) C13—C14 1.369 (3)
N1—C9 1.330 (3) C13—H13 0.9300
N2—C16 1.332 (3) C14—C15 1.368 (3)
N2—C12 1.342 (2) C14—H14 0.9300
C5—C6 1.369 (3) C15—C16 1.368 (3)
C5—H5 0.9300 C15—H15 0.9300
C6—C7 1.386 (3) C16—H16 0.9300
C6—H6 0.9300
C4—O1—H1' 108.9 (19) C7—C8—H8 120.0
C3—C1—C2 118.76 (17) N1—C9—C8 122.86 (19)
C3—C1—C4 119.37 (16) N1—C9—H9 118.6
C2—C1—C4 121.86 (16) C8—C9—H9 118.6
C3i—C2—C1 120.91 (17) C11—C10—C7 126.94 (18)
C3i—C2—H2 119.5 C11—C10—H10 116.5
C1—C2—H2 119.5 C7—C10—H10 116.5
C2i—C3—C1 120.33 (17) C10—C11—C12 125.68 (18)
C2i—C3—H3 119.8 C10—C11—H11 117.2
C1—C3—H3 119.8 C12—C11—H11 117.2
O2—C4—O1 124.02 (17) N2—C12—C13 122.00 (17)
O2—C4—C1 122.08 (17) N2—C12—C11 117.51 (17)
O1—C4—C1 113.89 (16) C13—C12—C11 120.47 (17)
C5—N1—C9 117.55 (16) C14—C13—C12 119.7 (2)
C16—N2—C12 116.65 (18) C14—C13—H13 120.2
N1—C5—C6 123.07 (18) C12—C13—H13 120.2
N1—C5—H5 118.5 C15—C14—C13 119.0 (2)
C6—C5—H5 118.5 C15—C14—H14 120.5
C5—C6—C7 120.20 (18) C13—C14—H14 120.5
C5—C6—H6 119.9 C14—C15—C16 117.86 (19)
C7—C6—H6 119.9 C14—C15—H15 121.1
C8—C7—C6 116.35 (17) C16—C15—H15 121.1
C8—C7—C10 120.33 (18) N2—C16—C15 124.8 (2)
C6—C7—C10 123.31 (17) N2—C16—H16 117.6
C9—C8—C7 119.96 (19) C15—C16—H16 117.6
C9—C8—H8 120.0
C3—C1—C2—C3i −0.4 (3) C7—C8—C9—N1 0.2 (3)
C4—C1—C2—C3i 178.17 (17) C8—C7—C10—C11 −176.30 (19)
C2—C1—C3—C2i 0.4 (3) C6—C7—C10—C11 5.1 (3)
C4—C1—C3—C2i −178.21 (17) C7—C10—C11—C12 −178.50 (17)
C3—C1—C4—O2 5.2 (3) C16—N2—C12—C13 0.2 (3)
C2—C1—C4—O2 −173.37 (18) C16—N2—C12—C11 178.75 (18)
C3—C1—C4—O1 −175.43 (17) C10—C11—C12—N2 −4.2 (3)
C2—C1—C4—O1 6.0 (3) C10—C11—C12—C13 174.40 (19)
C9—N1—C5—C6 0.0 (3) N2—C12—C13—C14 0.8 (3)
N1—C5—C6—C7 −0.3 (3) C11—C12—C13—C14 −177.69 (18)
C5—C6—C7—C8 0.5 (3) C12—C13—C14—C15 −1.2 (3)
C5—C6—C7—C10 179.21 (18) C13—C14—C15—C16 0.5 (3)
C6—C7—C8—C9 −0.5 (3) C12—N2—C16—C15 −0.9 (3)
C10—C7—C8—C9 −179.21 (18) C14—C15—C16—N2 0.6 (4)
C5—N1—C9—C8 0.1 (3)

Symmetry code: (i) −x+2, −y, −z+1.

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the N2/C12–C16 pyridine ring.

D—H···A D—H H···A D···A D—H···A
O1—H1′···N1ii 0.84 1.77 2.604 (2) 177
C9—H9···O2iii 0.93 2.67 3.285 (3) 125
C13—H13···O2iv 0.93 2.52 3.396 (2) 157
C5—H5···O2v 0.93 2.64 3.135 (2) 114
C16—H16···Cgvi 0.93 2.86 3.627 (3) 141

Symmetry codes: (ii) x, y, z+1; (iii) x, y, z−1; (iv) x−1, y, z; (v) x−1, y, z−1; (vi) x+1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2525).

References

  1. Bhogala, B. R. & Nangia, A. (2003). Cryst. Growth Des. 3, 547–554.
  2. Bruker (2000). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Desiraju, G. R. (1995). Angew. Chem. Int. Ed. 34, 2311–2327.
  5. Ebenezer, S. & Muthiah, P. T. (2012). Cryst. Growth Des. 12, 3766–3785.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  8. Moon, S.-H. & Park, K.-M. (2012). Acta Cryst. E68, o1201. [DOI] [PMC free article] [PubMed]
  9. Santra, R., Ghosh, N. & Biradha, K. (2008). New J. Chem. 32, 1673–1676.
  10. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Simon, J. & Bassoul, P. (2000). In Design of Molecular Materials: Supramolecular Engineering Berlin: Wiley-VCH.
  13. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  14. Weyna, D. R., Shattock, T., Vishweshwar, P. & Zaworotko, M. J. (2009). Cryst. Growth Des. 9, 1106–1123.
  15. Yan, D., Delori, A., Lloyd, G. O., Patel, B., Friscic, T., Day, G. M., Bucar, D. J., Jones, W., Min Wei, J. L., Evans, D. G. & Duan, X. (2012). CrystEngComm, 14, 5121–5123.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812046284/su2525sup1.cif

e-68-o3383-sup1.cif (18.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812046284/su2525Isup2.hkl

e-68-o3383-Isup2.hkl (114.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812046284/su2525Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES