Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 24;68(Pt 12):o3402. doi: 10.1107/S1600536812046612

(E)-3-Chloro-N′-hy­droxy­benzene-1-carboximidamide

S Sreenivasa a,*, K E ManojKumar a, P A Suchetan b, N R Mohan a, B S Palakshamurthy c
PMCID: PMC3588992  PMID: 23476228

Abstract

The title compound, C7H7ClN2O, crystallizes with two independent mol­ecules in the asymmetric unit. The compound adopts an E configuration across the C=N double bond, as the –OH group and the benzene ring are on opposite sides of the double bond while the H atom of the hy­droxy group is directed away from the –NH2 group. In the crystal, mol­ecules are linked to one another through O—H⋯N and N—H⋯O hydrogen bonds, forming chains along [010].

Related literature  

For related syntheses and the biological activity of oxadiazo­les, see: Kundu et al. (2012); Sakamoto et al. (2007); Tyrkov & Sukhenko (2004). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-68-o3402-scheme1.jpg

Experimental  

Crystal data  

  • C7H7ClN2O

  • M r = 170.60

  • Triclinic, Inline graphic

  • a = 5.0018 (17) Å

  • b = 10.984 (4) Å

  • c = 14.407 (6) Å

  • α = 74.000 (12)°

  • β = 89.952 (12)°

  • γ = 89.877 (11)°

  • V = 760.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 298 K

  • 0.24 × 0.22 × 0.20 mm

Data collection  

  • Bruker SMART X2S diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.902, T max = 0.917

  • 14972 measured reflections

  • 2655 independent reflections

  • 2192 reflections with I > 2σ(I)

  • R int = 0.060

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.109

  • S = 1.05

  • 2655 reflections

  • 218 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812046612/jj2159sup1.cif

e-68-o3402-sup1.cif (21.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812046612/jj2159Isup2.hkl

e-68-o3402-Isup2.hkl (130.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812046612/jj2159Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N4i 0.82 2.09 2.811 (2) 147
N3—H3B⋯O1ii 0.92 (3) 2.32 (3) 3.006 (2) 131 (2)
O1—H1⋯N2iii 0.82 2.08 2.805 (2) 147
N1—H1B⋯O2iv 0.87 (3) 2.36 (3) 3.006 (3) 132 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors thank Dr S. C. Sharma, Vice Chancellor, Tumkur University, Tumkur, for his constant encouragement, and Professor T. N. Guru Row and Vijithkumar, S. S. C. U, Indian Institute of Science, Bangalore, for their help with the data collection. They also thank Dr H. C. Devarajegowda, Department of Physics, Yuvarajas College (constituent), University of Mysore, for his support.

supplementary crystallographic information

Comment

Substituted N'-hydroxybenzamidines is a key intermediate obtained during the synthesis of pharmaceutically important 1,2,4-oxadiazole derivatives. 1,2,4-Oxadiazole derivatives are well known for their anti-HIV and anti-microbial activities (Kundu et al., 2012; Sakamoto et al., 2007; Tyrkov et al., 2004). In our studies on these types of compounds, we synthesized the title compound,C7H7ClN2O, (I) and report here its crystal structure.

The title compound, (I), crystallizes with two independent molecules (A & B) in the asymmetric unit (Fig. 1). The compound prefers an E configuration across the C—N double bond, as the OH group and the benzene ring are on opposite sides of the double bond while the hydrogen atom of the hydroxyl group is directed away from the NH2 group. In the crystal, the independent molecules (A & B) are connected to their respective crystallographically identical molecules through O1—H1···N2 and O2—H2···N4 intermolecular hydrogen bonds, each forming R22(6) dimeric pairs (Fig 2). The dimeric pairs are further connected to one another through intermolecular N1-H1N1···O2 and N3-H3N3···O1 hydrogen bonds forming a chain of ring patterns (Bernstein et al., 1995) along [010] (Fig 2).

Experimental

To a solution of 3-chlorobenzonitrile (1 mmol) in ethanol was added triethyl amine (2.5 mmol) and NH2OH.HCl (3.5 mmol). The reaction mixture was stirred at room temperature for 12hrs. (The reaction was monitored by TLC). The solvent was removed and the crude product was purified by column chromatography using hexane and ethyl acetate as the eluent. Single crystals required for X-ray diffraction measurements were obtained from slow evaporation of the solution of the compound in a mixture of ethanol and dichloromethane (1:4).

Refinement

The hydrogen atoms attached to N and O were located in difference maps and refined isotropically. The remaining H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 Å with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing of the title compound when viewed along the a axis. O—H···N and N—H···O hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.

Crystal data

C7H7ClN2O F(000) = 352
Mr = 170.60 Prism
Triclinic, P1 Dx = 1.489 Mg m3
Hall symbol: -P 1 Melting point: 386 K
a = 5.0018 (17) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.984 (4) Å Cell parameters from 218 reflections
c = 14.407 (6) Å θ = 1.9–25°
α = 74.000 (12)° µ = 0.44 mm1
β = 89.952 (12)° T = 298 K
γ = 89.877 (11)° Prism, colourless
V = 760.9 (5) Å3 0.24 × 0.22 × 0.20 mm
Z = 4

Data collection

Bruker SMART X2S diffractometer 2655 independent reflections
Radiation source: fine-focus sealed tube 2192 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.060
Detector resolution: 1.20 pixels mm-1 θmax = 25.0°, θmin = 1.9°
phi and ω scans h = −5→5
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) k = −13→13
Tmin = 0.902, Tmax = 0.917 l = −17→17
14972 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.1852P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
2655 reflections Δρmax = 0.19 e Å3
218 parameters Δρmin = −0.24 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraints Extinction coefficient: 0.024 (4)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
H1B 0.079 (5) 0.805 (3) 0.050 (2) 0.066 (8)*
H3B 0.430 (5) 0.301 (3) 0.047 (2) 0.065 (8)*
H3A 0.247 (5) 0.322 (2) 0.1254 (17) 0.043 (6)*
H1A 0.256 (5) 0.823 (2) 0.124 (2) 0.060 (7)*
Cl1 0.42873 (11) 0.85954 (5) 0.44393 (4) 0.0554 (2)
O1 −0.3214 (3) 0.87635 (13) 0.00143 (11) 0.0422 (4)
H1 −0.4285 0.9158 −0.0388 0.063*
N1 0.0928 (3) 0.81988 (15) 0.10588 (14) 0.0382 (4)
N2 −0.3071 (3) 0.93253 (14) 0.08000 (12) 0.0356 (4)
C1 −0.0344 (3) 0.95168 (15) 0.20990 (13) 0.0300 (4)
C2 0.1471 (3) 0.89050 (16) 0.28068 (14) 0.0345 (4)
H2 0.2326 0.8170 0.2763 0.041*
C3 0.1997 (4) 0.93902 (17) 0.35722 (14) 0.0363 (4)
C4 0.0746 (4) 1.04675 (18) 0.36709 (15) 0.0417 (5)
H4 0.1116 1.0783 0.4193 0.050*
C5 −0.1068 (4) 1.10622 (19) 0.29740 (16) 0.0456 (5)
H5 −0.1939 1.1787 0.3030 0.055*
C6 −0.1621 (4) 1.06053 (17) 0.21941 (15) 0.0398 (5)
H6 −0.2849 1.1024 0.1731 0.048*
C7 −0.0862 (3) 0.90061 (15) 0.12633 (13) 0.0285 (4)
Cl2 0.07127 (12) 0.35954 (5) 0.44389 (4) 0.0556 (2)
O2 0.8210 (3) 0.37629 (13) 0.00125 (11) 0.0420 (3)
H2A 0.9256 0.4165 −0.0396 0.063*
N3 0.4070 (4) 0.31958 (15) 0.10577 (14) 0.0381 (4)
N4 0.8071 (3) 0.43247 (15) 0.08013 (12) 0.0357 (4)
C8 0.5338 (3) 0.45141 (15) 0.20995 (13) 0.0298 (4)
C9 0.3535 (4) 0.39047 (16) 0.28028 (14) 0.0350 (4)
H9 0.2684 0.3172 0.2757 0.042*
C10 0.3003 (4) 0.43874 (17) 0.35716 (14) 0.0363 (4)
C11 0.4257 (4) 0.54666 (18) 0.36691 (15) 0.0422 (5)
H11 0.3885 0.5782 0.4192 0.051*
C12 0.6065 (4) 0.60617 (19) 0.29736 (16) 0.0457 (5)
H12 0.6931 0.6786 0.3030 0.055*
C13 0.6620 (4) 0.56053 (17) 0.21931 (15) 0.0396 (5)
H13 0.7845 0.6023 0.1729 0.048*
C14 0.5860 (3) 0.40097 (15) 0.12632 (13) 0.0286 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0630 (4) 0.0547 (3) 0.0467 (4) 0.0016 (2) −0.0246 (3) −0.0106 (2)
O1 0.0441 (8) 0.0484 (8) 0.0418 (8) 0.0024 (6) −0.0111 (6) −0.0251 (7)
N1 0.0349 (10) 0.0440 (9) 0.0412 (10) 0.0039 (7) −0.0025 (7) −0.0210 (8)
N2 0.0357 (9) 0.0405 (8) 0.0357 (9) 0.0016 (6) −0.0075 (7) −0.0191 (7)
C1 0.0289 (9) 0.0297 (8) 0.0321 (10) −0.0037 (6) −0.0001 (7) −0.0097 (7)
C2 0.0353 (10) 0.0311 (9) 0.0383 (11) 0.0006 (7) −0.0048 (8) −0.0114 (8)
C3 0.0358 (10) 0.0381 (9) 0.0335 (10) −0.0059 (7) −0.0049 (8) −0.0075 (8)
C4 0.0522 (12) 0.0401 (10) 0.0375 (11) −0.0075 (8) −0.0013 (9) −0.0185 (9)
C5 0.0544 (13) 0.0391 (10) 0.0500 (13) 0.0068 (8) −0.0044 (10) −0.0233 (9)
C6 0.0418 (11) 0.0377 (10) 0.0417 (11) 0.0078 (8) −0.0107 (8) −0.0138 (8)
C7 0.0284 (9) 0.0263 (8) 0.0308 (9) −0.0042 (6) 0.0003 (7) −0.0081 (7)
Cl2 0.0633 (4) 0.0552 (3) 0.0465 (4) −0.0023 (2) 0.0241 (3) −0.0109 (2)
O2 0.0445 (8) 0.0488 (8) 0.0404 (8) −0.0033 (6) 0.0107 (6) −0.0252 (7)
N3 0.0331 (10) 0.0442 (9) 0.0423 (10) −0.0049 (7) 0.0039 (7) −0.0211 (8)
N4 0.0347 (9) 0.0411 (8) 0.0367 (9) −0.0018 (6) 0.0056 (7) −0.0197 (7)
C8 0.0290 (9) 0.0296 (8) 0.0320 (10) 0.0029 (6) 0.0001 (7) −0.0103 (7)
C9 0.0351 (10) 0.0313 (9) 0.0401 (11) −0.0006 (7) 0.0044 (8) −0.0122 (8)
C10 0.0374 (11) 0.0366 (9) 0.0334 (10) 0.0054 (7) 0.0049 (8) −0.0074 (8)
C11 0.0538 (13) 0.0404 (10) 0.0366 (11) 0.0076 (8) 0.0004 (9) −0.0181 (9)
C12 0.0545 (13) 0.0390 (10) 0.0497 (13) −0.0072 (9) 0.0040 (10) −0.0225 (9)
C13 0.0423 (11) 0.0373 (10) 0.0420 (12) −0.0085 (8) 0.0083 (8) −0.0154 (8)
C14 0.0273 (9) 0.0274 (8) 0.0311 (9) 0.0035 (6) −0.0005 (7) −0.0081 (7)

Geometric parameters (Å, º)

Cl1—C3 1.7412 (19) Cl2—C10 1.742 (2)
O1—N2 1.433 (2) O2—N4 1.436 (2)
O1—H1 0.8200 O2—H2A 0.8200
N1—C7 1.347 (2) N3—C14 1.356 (2)
N1—H1B 0.87 (3) N3—H3B 0.92 (3)
N1—H1A 0.86 (3) N3—H3A 0.85 (2)
N2—C7 1.288 (2) N4—C14 1.288 (2)
C1—C2 1.391 (2) C8—C9 1.384 (3)
C1—C6 1.394 (3) C8—C13 1.399 (2)
C1—C7 1.485 (2) C8—C14 1.481 (2)
C2—C3 1.376 (3) C9—C10 1.379 (3)
C2—H2 0.9300 C9—H9 0.9300
C3—C4 1.379 (3) C10—C11 1.383 (3)
C4—C5 1.377 (3) C11—C12 1.375 (3)
C4—H4 0.9300 C11—H11 0.9300
C5—C6 1.380 (3) C12—C13 1.379 (3)
C5—H5 0.9300 C12—H12 0.9300
C6—H6 0.9300 C13—H13 0.9300
N2—O1—H1 109.5 N4—O2—H2A 109.5
C7—N1—H1B 116.7 (17) C14—N3—H3B 116.1 (16)
C7—N1—H1A 118.6 (17) C14—N3—H3A 117.6 (15)
H1B—N1—H1A 114 (2) H3B—N3—H3A 117 (2)
C7—N2—O1 109.78 (14) C14—N4—O2 109.65 (14)
C2—C1—C6 118.65 (17) C9—C8—C13 118.93 (17)
C2—C1—C7 119.67 (15) C9—C8—C14 119.71 (15)
C6—C1—C7 121.67 (16) C13—C8—C14 121.36 (16)
C3—C2—C1 119.83 (17) C10—C9—C8 119.82 (16)
C3—C2—H2 120.1 C10—C9—H9 120.1
C1—C2—H2 120.1 C8—C9—H9 120.1
C2—C3—C4 121.88 (17) C9—C10—C11 121.64 (18)
C2—C3—Cl1 118.24 (14) C9—C10—Cl2 118.40 (14)
C4—C3—Cl1 119.87 (15) C11—C10—Cl2 119.96 (15)
C5—C4—C3 118.08 (18) C12—C11—C10 118.32 (18)
C5—C4—H4 121.0 C12—C11—H11 120.8
C3—C4—H4 121.0 C10—C11—H11 120.8
C4—C5—C6 121.40 (18) C11—C12—C13 121.28 (18)
C4—C5—H5 119.3 C11—C12—H12 119.4
C6—C5—H5 119.3 C13—C12—H12 119.4
C5—C6—C1 120.15 (18) C12—C13—C8 120.01 (18)
C5—C6—H6 119.9 C12—C13—H13 120.0
C1—C6—H6 119.9 C8—C13—H13 120.0
N2—C7—N1 123.84 (17) N4—C14—N3 123.71 (17)
N2—C7—C1 117.48 (15) N4—C14—C8 117.58 (15)
N1—C7—C1 118.61 (16) N3—C14—C8 118.62 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2A···N4i 0.82 2.09 2.811 (2) 147
N3—H3B···O1ii 0.92 (3) 2.32 (3) 3.006 (2) 131 (2)
O1—H1···N2iii 0.82 2.08 2.805 (2) 147
N1—H1B···O2iv 0.87 (3) 2.36 (3) 3.006 (3) 132 (3)

Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x, −y+1, −z; (iii) −x−1, −y+2, −z; (iv) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2159).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2004). APEX, SAINT-Plus and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Kundu, M., Singh, J., Singh, B., Ghosh, T., Maiti, B. C. & Maity, T. K. (2012). Indian J. Chem. Sect. B, 51, 493–497.
  5. Sakamoto, T., Cullen, M. D., Hartman, T. L., Watson, K. M., Buckheit, R. W., Pannecouque, C., DeClercq, E. & Cushman, M. (2007). J. Med. Chem. 50, 3314–3319. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Tyrkov, A. G. & Sukhenko, L. T. (2004). Pharm. Chem. J 38, 30–38.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812046612/jj2159sup1.cif

e-68-o3402-sup1.cif (21.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812046612/jj2159Isup2.hkl

e-68-o3402-Isup2.hkl (130.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812046612/jj2159Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES