Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 24;68(Pt 12):o3417–o3418. doi: 10.1107/S1600536812047307

4-({(Z)-5-[(Z)-3-Eth­oxy-4-hy­droxy­benzyl­idene]-3-methyl-4-oxo-1,3-thia­zolidin-2-yl­idene}amino)­benzoic acid dimethyl­formamide monosolvate

Paul Kosma a, Edgar Selzer b, Kurt Mereiter c,*
PMCID: PMC3589002  PMID: 23476238

Abstract

The mol­ecular structure of the title compound, C20H18N2O5S·C3H7NO, represents an essentially planar 5-benzyl­idene-thia­zolidine moiety (r.m.s. deviation from planarity without ring substituents = 0.095 Å) to which the 4-amino­benzoic acid fragment is inclined at 76.23 (1)°. In the crystal, the benzoic acid mol­ecules are arranged in layers parallel to [001] which are built up from inversion dimers held together by head-to-tail phenol–carb­oxy O—H⋯O hydrogen bonds and head-to-tail π–π stacking inter­actions between the 5-benzyl­idene-thia­zolidine moieties (ring centroid distance = 3.579 Å). These layers are separated by the dimethyl­formamide solvent mol­ecules which are firmly anchored via a short O—H⋯O hydrogen bond [O⋯O = 2.5529 (10) Å] donated by the –COOH group.

Related literature  

For bioactive compounds based on the 4-thia­zolidinone scaffold of the title compound, see: Ottanà et al. (2005); Verma & Saraf (2008). For potential anti­cancer activity via αvβ3 integrin antagonistic properties of 4-thia­zolidinone derivatives, see: Dayam et al. (2006). For a description of the Cambridge Structural Database, see: Allen (2002). For standard bond lengths, see: Allen et al. (1987). For crystal structures related to that of the title compound, see: Ottanà et al. (2005); Yavari et al. (2008); Deepthi et al. (2001); Tomaščiková et al. (2008).graphic file with name e-68-o3417-scheme1.jpg

Experimental  

Crystal data  

  • C20H18N2O5S·C3H7NO

  • M r = 471.52

  • Triclinic, Inline graphic

  • a = 7.7532 (3) Å

  • b = 9.3081 (3) Å

  • c = 15.6969 (3) Å

  • α = 86.390 (2)°

  • β = 89.813 (2)°

  • γ = 87.656 (2)°

  • V = 1129.61 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 100 K

  • 0.53 × 0.35 × 0.24 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.89, T max = 0.96

  • 29040 measured reflections

  • 6537 independent reflections

  • 5993 reflections with I > 2σ(I)

  • R int = 0.024

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.094

  • S = 1.02

  • 6537 reflections

  • 304 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812047307/fk2066sup1.cif

e-68-o3417-sup1.cif (22.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812047307/fk2066Isup2.hkl

e-68-o3417-Isup2.hkl (319.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812047307/fk2066Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5o⋯O6 0.84 1.73 2.5529 (10) 167
O3—H3o⋯O4i 0.84 2.05 2.7386 (11) 139

Symmetry code: (i) Inline graphic.

Acknowledgments

The X-ray centre of the Vienna University of Technology is acknowledged for providing access to the single-crystal diffractometer.

supplementary crystallographic information

Comment

Compounds based on the 4-thiazolidinone scaffold received attention in recent years as bioactive agents with a broad therapeutic potential (Ottanà et al., 2005; Verma & Saraf, 2008). The title compound 1.DMF, (I), is the dimethylformamide monosolvate of a 4-thiazolidinone derivative 1, which shows significant anticancer activity viaαvβ3 integrin antagonistic properties (Dayam et al., 2006). The molecule of 1 consists of a planar thiazolidine ring that is substituted in 2,3,4, and 5-positions by a 4-aminobenzoic acid fragment, a methyl group, an oxo atom O1, and a 3-ethoxy-4-hydroxy-phenylmethylidene group (Fig. 1). Bond lengths and bond angles in the thiazolidine ring correspond well with related compounds, particularly with Cambridge Structural Database (Allen, 2002) refcode CAPGIK (Ottanà et al., 2005; for other structures, see: CSD BIVWUZ (Yavari et al., 2008), OGIBAH (Deepthi et al., 2001), and SIXFOV (Tomaščiková et al., 2008)), where the S1—C1 bond was typically found to be slightly longer than the S1—C4 bond (1.7793 (9) Å and 1.7564 (10) Å in 1). The ring bonds N1—C1 = 1.3873 (12) Å and N1—C3 = 1.3729 (12) Å in 1 are shorter than standard C—N single bonds and indicate some quasi-aromatic conjugation, while C3—C4 1.4824 (13) Å is longer than a typical aromatic C—C ring bond (Allen et al., 1987). The thiazolidine ring and its four substituent atoms N2, C2, O1, and C5 are nearly planar. Their r.m.s. deviation from planarity is 0.021 Å, while for the thiazolidine ring atoms this quantity is 0.007 Å. The phenylmethylidene unit is only moderately inclined to the thiazolidine ring (ring-ring inclination angle 10.85 (6)°) enabling conjugation between the two rings via the methylidene carbon C5. The bond angle C4—C5—C6 = 133.55 (9)° is large in response to the short intramolecular contact distance S1···H7 = 2.752 Å. The 4-aminobenzoic acid fragment is inclined to the thiazolidine ring by 75.01 (3)° and the bond angle at the linker atom N2 is C1—N2—C14 = 121.40 (8)°. CSD refcode CAPGIK (Ottanà et al., 2005) shows comparable trends in bond angles and conformation.

In the crystal lattice of (I) the molecules of 1 form inversion dimers with head-to-tail π–π-stacking interactions and centroid-centroid distances of 3.579 Å between the thiazolidine and the benzene rings C6 — C11 (Fig. 2). The shortest two intermolecular distances in these π–π-stacks are C3···C7(1 - x,1 - y,1 - z) = 3.2344 (13) Å and C4···C6(1 - x,1 - y,1 - z) = 3.4721 (13) Å. These π–π-stacked pairs are arranged in layers parallel to [001] held together by intermolecular hydrogen bonds O3phenol—H3o···O4carboxyl(-x,2 - y,1 - z) (Table 1, Fig. 2). To both sides of these layers and separating them at z≈ 0, 1, 2, etc. are the DMF solvent molecules. They are firmly attached via the strong hydrogen bonds O5—H5o···O6, O···O = 2.5529 (10) Å, donated by the COOH group of 1 to the oxygen of DMF. Likely due to this feature the title compound is stable at room temperature against desolvation.

Experimental

Although the compound 1 (Fig. 3) and its bioactivity was already described (Dayam et al.; 2006), a synthesis was not reported. In the present work 1 was synthesized in good yield according to the reaction scheme shown in Fig. 3. A 40% aqueous solution of methylamine (13 g) was added dropwise at 5–7 °C to a solution of 2 (see Fig. 3; 5 g, 28 mmol) in water (110 ml) and stirred for ~2.5 h with gradual warming to room temperature. The aqueous solution was extracted three times with 80 ml portions of EtOAc and freed from residual EtOAc in a rotary evaporator under vacuum at 50 °C. The solution was cooled to 5 °C and acidified with 2 M HCl to pH 3. The resulting precipitate was filtered, thoroughly washed with cold water, and dissolved in EtOAc (250 ml). The organic layer was washed with brine, dried (Na2SO4) and concentrated to give 3.94 g (67%) of 3 (Fig. 3) as colorless solid; m.p. >170 °C (dec.). A solution of compound 3 (3.94 g, 19 mmol) in dry dioxane (60 ml) was refluxed with methyl bromoacetate (2.1 ml, 23 mmol) for 22 h. The solution was concentrated and the resulting yellow solid was dissolved in 0.1 M NaOH (100 ml). The solution was washed twice with Et2O (100 ml) and acidified with 2M HCl. The product was filtered off and dissolved in 1:1 EtOAc-MeOH (300 ml). The organic layer was dried (Na2SO4) and concentrated to afford compound 4 (Fig. 3) as colorless solid (3.24 g, 68%), m.p. 198–199°C (EtOH). 1H NMR (600 MHz, DMSO) δ 7.93 (d, 2H, J = 8.3 Hz, H-2, H-6, Ph), 7.03 (d, 2H, J = 8.3 Hz, H-3, H-5, Ph), 4.04 (s, 2H, CH2), 3.16 (s, 3H, N—CH3). 13C NMR (150 MHz, DMSO) δ 171.9 (C=O), 167.0 (COOH), 156.6 (SCN), 152.3 (C-1, Ph), 130.8 (C-2, C-6, Ph), 126.6 (C-4, Ph), 121.1 (C-3, C-5, Ph), 32.8 (CH2), 29.2 (CH3). HRMS (ESI) calcd for C11H10N2O3S [M—H]-: 249.0339; found 249.0334. A solution of compound 4 (15 g, 60 mmol), 3-ethoxy-4-hydroxybenzaldehyde (12 g, 72 mmol) and sodium acetate (9.8 g, 120 mmol) in glacial acetic acid (300 ml) was refluxed for 4 d. Acetic acid was removed at 140 °C and the suspension was kept at 140 °C over night. After cooling to room temperature, acetic acid was added (100 ml) and the suspension was poured into water (1 L) and the resulting precipitate was filtered, washed with water and dried. The residue was crystallized from acetic acid, washed with acetone and dried to give 13 g (54%) of the title compound 1 (Fig. 3) as yellow solid; m.p. >180 °C (dec.). 1H NMR (600 MHz, DMSO): δ 9.78 (s, 1H, OH), 7.98 (d, 2H, J = 8.5 Hz, H-2, H-6, Ph), 7.70 (s, 1H, C-2, Ar), 7.17 (d, 1H, J = 1.9 Hz, =CH), 7.14 (d, 2H, J = 8.5 Hz, H-3, H-5, Ph), 6.95 (dd, 1H, J = 1.9, J = 8.3 Hz, H-6, Ar), 6.89 (d, 1H, J = 8.3 Hz, H-5, Ar), 4.04 (q, 2H, CH2), 3.33 (s, 3H, N—CH3) and 1.31 (t, 3H, CH3). HRMS (ESI) calcd for C20H19N2O5S [M+H]+: 399.1009; found 399.1007. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation at room temperature of a solution of 1 in dimethylformamide (DMF). Solvents other than DMF, like ethanol, acetone or acetic acid gave only unsuitable material.

Refinement

C-bonded H atoms were placed in calculated positions and thereafter treated as riding, C—H = 0.95–0.99 Å, Uiso(H) = 1.2–1.5Ueq(C). O-bonded H atoms were refined with AFIX 147 of program SHELXL97 (Sheldrick, 2008), O—H = 0.84 Å, Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compopund with displacement ellipsoids drawn at the 50% probability level. Dashed red line indicates the -COOH···DMF interaction.

Fig. 2.

Fig. 2.

Crystal packing viewed along [100] showing O—H···O hydrogen bonds as dashed red lines and π-π-stacking interactions as black lines. Symmetry codes: (i) -x, 2 - y, 1 - z; (ii) 1 - x,1 - y,1 - z.

Fig. 3.

Fig. 3.

Reaction scheme for the synthesis of 1.

Crystal data

C20H18N2O5S·C3H7NO Z = 2
Mr = 471.52 F(000) = 496
Triclinic, P1 Dx = 1.386 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.7532 (3) Å Cell parameters from 9007 reflections
b = 9.3081 (3) Å θ = 2.2–30.0°
c = 15.6969 (3) Å µ = 0.19 mm1
α = 86.390 (2)° T = 100 K
β = 89.813 (2)° Prism, yellow
γ = 87.656 (2)° 0.53 × 0.35 × 0.24 mm
V = 1129.61 (6) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer 6537 independent reflections
Radiation source: fine-focus sealed tube 5993 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.024
φ and ω scans θmax = 30.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −10→10
Tmin = 0.89, Tmax = 0.96 k = −13→13
29040 measured reflections l = −22→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0516P)2 + 0.4019P] where P = (Fo2 + 2Fc2)/3
6537 reflections (Δ/σ)max = 0.002
304 parameters Δρmax = 0.51 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.41930 (3) 0.65538 (2) 0.349946 (14) 0.01698 (6)
O1 0.80606 (9) 0.38102 (8) 0.35244 (5) 0.02040 (14)
O2 0.37560 (9) 0.96319 (8) 0.62843 (5) 0.02005 (14)
O3 0.65049 (10) 0.96754 (8) 0.73138 (5) 0.02233 (15)
H3o 0.5526 1.0091 0.7342 0.033*
O4 −0.39179 (10) 0.90766 (9) 0.17578 (5) 0.02725 (17)
O5 −0.23650 (9) 1.02278 (8) 0.07406 (5) 0.02368 (16)
H5o −0.3306 1.0689 0.0647 0.036*
N1 0.57050 (10) 0.44691 (8) 0.26982 (5) 0.01658 (15)
N2 0.33188 (11) 0.54753 (9) 0.19732 (5) 0.01936 (16)
C1 0.43011 (12) 0.54409 (10) 0.26183 (6) 0.01595 (16)
C2 0.60871 (14) 0.34431 (11) 0.20524 (7) 0.02270 (19)
H2A 0.7153 0.2885 0.2205 0.034*
H2B 0.6232 0.3965 0.1496 0.034*
H2C 0.5133 0.2789 0.2022 0.034*
C3 0.67482 (12) 0.45592 (10) 0.33963 (6) 0.01610 (16)
C4 0.60700 (12) 0.56946 (10) 0.39437 (6) 0.01610 (16)
C5 0.69539 (12) 0.59362 (10) 0.46550 (6) 0.01749 (17)
H5 0.7951 0.5316 0.4740 0.021*
C6 0.67052 (12) 0.69420 (10) 0.53172 (6) 0.01676 (17)
C7 0.52167 (12) 0.78354 (10) 0.54232 (6) 0.01713 (17)
H7 0.4277 0.7816 0.5037 0.021*
C8 0.51260 (12) 0.87446 (10) 0.60936 (6) 0.01695 (17)
C9 0.65368 (12) 0.87976 (10) 0.66581 (6) 0.01783 (17)
C10 0.79983 (13) 0.79211 (11) 0.65505 (6) 0.01950 (18)
H10 0.8948 0.7954 0.6929 0.023*
C11 0.80769 (12) 0.69964 (10) 0.58921 (6) 0.01877 (18)
H11 0.9078 0.6389 0.5829 0.023*
C12 0.22371 (12) 0.96318 (10) 0.57563 (6) 0.01843 (17)
H12A 0.1783 0.8652 0.5764 0.022*
H12B 0.2514 0.9948 0.5159 0.022*
C13 0.09223 (13) 1.06669 (11) 0.61232 (7) 0.02253 (19)
H13A 0.0657 1.0338 0.6713 0.034*
H13B −0.0134 1.0705 0.5780 0.034*
H13C 0.1392 1.1629 0.6115 0.034*
C14 0.18954 (12) 0.64677 (10) 0.18805 (6) 0.01736 (17)
C15 0.03664 (13) 0.62483 (11) 0.23377 (6) 0.02102 (19)
H15 0.0308 0.5477 0.2762 0.025*
C16 −0.10619 (13) 0.71632 (11) 0.21680 (6) 0.02002 (18)
H16 −0.2100 0.7017 0.2479 0.024*
C17 −0.09940 (12) 0.82963 (10) 0.15451 (6) 0.01648 (17)
C18 0.05412 (12) 0.85138 (10) 0.10947 (6) 0.01830 (17)
H18 0.0599 0.9289 0.0673 0.022*
C19 0.19814 (12) 0.76057 (11) 0.12589 (6) 0.01939 (18)
H19 0.3021 0.7757 0.0950 0.023*
C20 −0.25683 (12) 0.92308 (11) 0.13672 (6) 0.01868 (18)
O6 −0.49662 (10) 1.18732 (8) 0.02984 (5) 0.02426 (16)
N3 −0.76655 (11) 1.27974 (10) 0.05269 (6) 0.02176 (17)
C21 −0.63956 (13) 1.18080 (11) 0.06532 (6) 0.02044 (18)
H21 −0.6593 1.1002 0.1038 0.025*
C22 −0.74498 (16) 1.40627 (12) −0.00518 (7) 0.0282 (2)
H22A −0.7384 1.4918 0.0279 0.042*
H22B −0.8436 1.4184 −0.0442 0.042*
H22C −0.6384 1.3938 −0.0381 0.042*
C23 −0.92669 (15) 1.27171 (13) 0.10088 (8) 0.0296 (2)
H23A −0.9239 1.1831 0.1381 0.044*
H23B −1.0242 1.2713 0.0613 0.044*
H23C −0.9399 1.3553 0.1357 0.044*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01676 (11) 0.01661 (11) 0.01742 (11) 0.00188 (8) −0.00169 (8) −0.00148 (8)
O1 0.0160 (3) 0.0205 (3) 0.0241 (3) 0.0017 (2) −0.0018 (3) 0.0007 (3)
O2 0.0156 (3) 0.0244 (3) 0.0204 (3) 0.0021 (3) −0.0045 (2) −0.0046 (3)
O3 0.0187 (3) 0.0284 (4) 0.0204 (3) 0.0015 (3) −0.0037 (3) −0.0071 (3)
O4 0.0177 (3) 0.0369 (4) 0.0265 (4) 0.0031 (3) 0.0047 (3) −0.0001 (3)
O5 0.0171 (3) 0.0238 (4) 0.0289 (4) 0.0042 (3) 0.0005 (3) 0.0049 (3)
N1 0.0170 (4) 0.0158 (3) 0.0168 (3) 0.0017 (3) −0.0013 (3) −0.0016 (3)
N2 0.0195 (4) 0.0195 (4) 0.0187 (4) 0.0026 (3) −0.0031 (3) −0.0005 (3)
C1 0.0158 (4) 0.0148 (4) 0.0170 (4) −0.0002 (3) 0.0000 (3) 0.0007 (3)
C2 0.0264 (5) 0.0214 (4) 0.0203 (4) 0.0046 (4) −0.0009 (4) −0.0053 (3)
C3 0.0157 (4) 0.0153 (4) 0.0172 (4) −0.0025 (3) −0.0001 (3) 0.0013 (3)
C4 0.0151 (4) 0.0154 (4) 0.0176 (4) −0.0013 (3) −0.0001 (3) 0.0006 (3)
C5 0.0160 (4) 0.0176 (4) 0.0187 (4) −0.0014 (3) −0.0006 (3) 0.0007 (3)
C6 0.0158 (4) 0.0176 (4) 0.0168 (4) −0.0021 (3) −0.0013 (3) 0.0009 (3)
C7 0.0150 (4) 0.0191 (4) 0.0172 (4) −0.0024 (3) −0.0030 (3) 0.0011 (3)
C8 0.0147 (4) 0.0184 (4) 0.0175 (4) −0.0018 (3) −0.0012 (3) 0.0011 (3)
C9 0.0168 (4) 0.0206 (4) 0.0162 (4) −0.0030 (3) −0.0015 (3) −0.0001 (3)
C10 0.0159 (4) 0.0241 (4) 0.0184 (4) −0.0011 (3) −0.0040 (3) −0.0005 (3)
C11 0.0156 (4) 0.0211 (4) 0.0194 (4) 0.0000 (3) −0.0025 (3) 0.0003 (3)
C12 0.0155 (4) 0.0204 (4) 0.0194 (4) −0.0010 (3) −0.0038 (3) −0.0007 (3)
C13 0.0184 (4) 0.0230 (5) 0.0262 (5) 0.0011 (3) −0.0025 (4) −0.0029 (4)
C14 0.0176 (4) 0.0187 (4) 0.0158 (4) 0.0010 (3) −0.0037 (3) −0.0021 (3)
C15 0.0227 (5) 0.0222 (4) 0.0175 (4) 0.0000 (3) 0.0003 (3) 0.0032 (3)
C16 0.0185 (4) 0.0234 (4) 0.0180 (4) −0.0016 (3) 0.0024 (3) 0.0006 (3)
C17 0.0148 (4) 0.0189 (4) 0.0158 (4) −0.0003 (3) −0.0004 (3) −0.0023 (3)
C18 0.0163 (4) 0.0189 (4) 0.0193 (4) −0.0002 (3) 0.0006 (3) 0.0019 (3)
C19 0.0157 (4) 0.0210 (4) 0.0210 (4) 0.0001 (3) 0.0012 (3) 0.0017 (3)
C20 0.0163 (4) 0.0214 (4) 0.0186 (4) 0.0002 (3) −0.0007 (3) −0.0040 (3)
O6 0.0219 (4) 0.0275 (4) 0.0226 (3) 0.0059 (3) −0.0010 (3) 0.0004 (3)
N3 0.0206 (4) 0.0220 (4) 0.0226 (4) 0.0031 (3) −0.0031 (3) −0.0029 (3)
C21 0.0223 (5) 0.0210 (4) 0.0180 (4) 0.0021 (3) −0.0045 (3) −0.0018 (3)
C22 0.0351 (6) 0.0217 (5) 0.0268 (5) 0.0067 (4) −0.0057 (4) 0.0010 (4)
C23 0.0212 (5) 0.0342 (6) 0.0344 (6) 0.0010 (4) 0.0011 (4) −0.0103 (5)

Geometric parameters (Å, º)

S1—C4 1.7564 (10) C11—H11 0.9500
S1—C1 1.7793 (9) C12—C13 1.5116 (14)
O1—C3 1.2197 (12) C12—H12A 0.9900
O2—C8 1.3628 (11) C12—H12B 0.9900
O2—C12 1.4423 (11) C13—H13A 0.9800
O3—C9 1.3533 (12) C13—H13B 0.9800
O3—H3o 0.8400 C13—H13C 0.9800
O4—C20 1.2200 (12) C14—C19 1.3978 (13)
O5—C20 1.3227 (12) C14—C15 1.3993 (13)
O5—H5o 0.8400 C15—C16 1.3852 (14)
N1—C3 1.3729 (12) C15—H15 0.9500
N1—C1 1.3873 (12) C16—C17 1.3948 (13)
N1—C2 1.4575 (12) C16—H16 0.9500
N2—C1 1.2671 (12) C17—C18 1.3978 (13)
N2—C14 1.4118 (12) C17—C20 1.4863 (13)
C2—H2A 0.9800 C18—C19 1.3874 (13)
C2—H2B 0.9800 C18—H18 0.9500
C2—H2C 0.9800 C19—H19 0.9500
C3—C4 1.4824 (13) O6—C21 1.2406 (13)
C4—C5 1.3475 (13) N3—C21 1.3270 (13)
C5—C6 1.4494 (13) N3—C23 1.4539 (14)
C5—H5 0.9500 N3—C22 1.4563 (14)
C6—C11 1.4015 (13) C21—H21 0.9500
C6—C7 1.4103 (13) C22—H22A 0.9800
C7—C8 1.3912 (13) C22—H22B 0.9800
C7—H7 0.9500 C22—H22C 0.9800
C8—C9 1.4143 (13) C23—H23A 0.9800
C9—C10 1.3851 (14) C23—H23B 0.9800
C10—C11 1.3857 (14) C23—H23C 0.9800
C10—H10 0.9500
C4—S1—C1 91.11 (4) C13—C12—H12B 110.4
C8—O2—C12 117.96 (7) H12A—C12—H12B 108.6
C9—O3—H3o 109.5 C12—C13—H13A 109.5
C20—O5—H5o 109.5 C12—C13—H13B 109.5
C3—N1—C1 116.78 (8) H13A—C13—H13B 109.5
C3—N1—C2 121.81 (8) C12—C13—H13C 109.5
C1—N1—C2 121.36 (8) H13A—C13—H13C 109.5
C1—N2—C14 121.40 (8) H13B—C13—H13C 109.5
N2—C1—N1 120.85 (8) C19—C14—C15 120.18 (9)
N2—C1—S1 128.47 (7) C19—C14—N2 118.40 (9)
N1—C1—S1 110.67 (7) C15—C14—N2 121.13 (9)
N1—C2—H2A 109.5 C16—C15—C14 119.55 (9)
N1—C2—H2B 109.5 C16—C15—H15 120.2
H2A—C2—H2B 109.5 C14—C15—H15 120.2
N1—C2—H2C 109.5 C15—C16—C17 120.75 (9)
H2A—C2—H2C 109.5 C15—C16—H16 119.6
H2B—C2—H2C 109.5 C17—C16—H16 119.6
O1—C3—N1 123.42 (9) C16—C17—C18 119.36 (9)
O1—C3—C4 125.97 (9) C16—C17—C20 119.06 (8)
N1—C3—C4 110.60 (8) C18—C17—C20 121.57 (8)
C5—C4—C3 118.33 (8) C19—C18—C17 120.46 (9)
C5—C4—S1 130.83 (8) C19—C18—H18 119.8
C3—C4—S1 110.81 (7) C17—C18—H18 119.8
C4—C5—C6 133.55 (9) C18—C19—C14 119.69 (9)
C4—C5—H5 113.2 C18—C19—H19 120.2
C6—C5—H5 113.2 C14—C19—H19 120.2
C11—C6—C7 118.94 (9) O4—C20—O5 123.61 (9)
C11—C6—C5 115.68 (8) O4—C20—C17 122.94 (9)
C7—C6—C5 125.38 (8) O5—C20—C17 113.45 (8)
C8—C7—C6 119.89 (9) C21—N3—C23 121.33 (9)
C8—C7—H7 120.1 C21—N3—C22 120.97 (9)
C6—C7—H7 120.1 C23—N3—C22 117.53 (9)
O2—C8—C7 126.07 (9) O6—C21—N3 123.87 (10)
O2—C8—C9 113.74 (8) O6—C21—H21 118.1
C7—C8—C9 120.18 (9) N3—C21—H21 118.1
O3—C9—C10 118.26 (9) N3—C22—H22A 109.5
O3—C9—C8 121.99 (9) N3—C22—H22B 109.5
C10—C9—C8 119.74 (9) H22A—C22—H22B 109.5
C9—C10—C11 120.09 (9) N3—C22—H22C 109.5
C9—C10—H10 120.0 H22A—C22—H22C 109.5
C11—C10—H10 120.0 H22B—C22—H22C 109.5
C10—C11—C6 121.14 (9) N3—C23—H23A 109.5
C10—C11—H11 119.4 N3—C23—H23B 109.5
C6—C11—H11 119.4 H23A—C23—H23B 109.5
O2—C12—C13 106.71 (8) N3—C23—H23C 109.5
O2—C12—H12A 110.4 H23A—C23—H23C 109.5
C13—C12—H12A 110.4 H23B—C23—H23C 109.5
O2—C12—H12B 110.4
C14—N2—C1—N1 −179.41 (8) O2—C8—C9—O3 −0.99 (13)
C14—N2—C1—S1 −1.09 (14) C7—C8—C9—O3 179.48 (9)
C3—N1—C1—N2 176.75 (9) O2—C8—C9—C10 178.36 (9)
C2—N1—C1—N2 −0.86 (14) C7—C8—C9—C10 −1.18 (14)
C3—N1—C1—S1 −1.85 (10) O3—C9—C10—C11 179.38 (9)
C2—N1—C1—S1 −179.46 (7) C8—C9—C10—C11 0.01 (14)
C4—S1—C1—N2 −177.56 (9) C9—C10—C11—C6 0.98 (15)
C4—S1—C1—N1 0.90 (7) C7—C6—C11—C10 −0.81 (14)
C1—N1—C3—O1 −176.93 (8) C5—C6—C11—C10 179.63 (9)
C2—N1—C3—O1 0.67 (14) C8—O2—C12—C13 178.41 (8)
C1—N1—C3—C4 1.95 (11) C1—N2—C14—C19 108.96 (11)
C2—N1—C3—C4 179.54 (8) C1—N2—C14—C15 −77.22 (13)
O1—C3—C4—C5 −0.48 (14) C19—C14—C15—C16 0.23 (15)
N1—C3—C4—C5 −179.32 (8) N2—C14—C15—C16 −173.49 (9)
O1—C3—C4—S1 177.69 (8) C14—C15—C16—C17 0.20 (15)
N1—C3—C4—S1 −1.15 (9) C15—C16—C17—C18 −0.59 (15)
C1—S1—C4—C5 178.01 (10) C15—C16—C17—C20 178.47 (9)
C1—S1—C4—C3 0.14 (7) C16—C17—C18—C19 0.56 (14)
C3—C4—C5—C6 178.92 (9) C20—C17—C18—C19 −178.48 (9)
S1—C4—C5—C6 1.18 (17) C17—C18—C19—C14 −0.13 (15)
C4—C5—C6—C11 −170.63 (10) C15—C14—C19—C18 −0.27 (15)
C4—C5—C6—C7 9.84 (17) N2—C14—C19—C18 173.62 (9)
C11—C6—C7—C8 −0.36 (13) C16—C17—C20—O4 1.91 (15)
C5—C6—C7—C8 179.15 (9) C18—C17—C20—O4 −179.04 (10)
C12—O2—C8—C7 0.83 (14) C16—C17—C20—O5 −177.34 (9)
C12—O2—C8—C9 −178.67 (8) C18—C17—C20—O5 1.71 (13)
C6—C7—C8—O2 −178.13 (9) C23—N3—C21—O6 −175.35 (10)
C6—C7—C8—C9 1.34 (14) C22—N3—C21—O6 −0.22 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O5—H5o···O6 0.84 1.73 2.5529 (10) 167
O3—H3o···O4i 0.84 2.05 2.7386 (11) 139

Symmetry code: (i) −x, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FK2066).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dayam, R., Aiello, F., Deng, J., Wu, Y., Garofalo, A., Chen, X. & Neamati, N. (2006). J. Med. Chem. 49, 4526–4534. [DOI] [PubMed]
  5. Deepthi, S., Rajalakshmi, K., Gunasekaran, K., Velmurugan, D. & Nagarajan, K. (2001). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A, 369, 221–242.
  6. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  7. Ottanà, R., Maccari, R., Barreca, M. L., Bruno, G., Rotondo, A., Rossi, A., Chiricosta, G., Di Paola, R., Sautebin, L., Cuzzocrea, S. & Vigorita, M. G. (2005). Bioorg. Med. Chem. 13, 4243–4252. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Tomaščiková, J., Danihel, I., Böhm, S., Imrich, J., Kristian, P., Potočňák, I., Čejka, J. & Klika, K. D. (2008). J. Mol. Struct. 875, 419–426.
  11. Verma, A. & Saraf, S. K. (2008). Eur. J. Med. Chem. 43, 897–905. [DOI] [PubMed]
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  13. Yavari, I., Hosseini, N. & Moradi, L. (2008). Monatsh. Chem. 139, 133–136.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812047307/fk2066sup1.cif

e-68-o3417-sup1.cif (22.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812047307/fk2066Isup2.hkl

e-68-o3417-Isup2.hkl (319.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812047307/fk2066Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES