Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 24;68(Pt 12):o3421–o3422. doi: 10.1107/S1600536812047617

(1R,3R,4R,6S)-4-(7-Meth­oxy-2-oxo-2H-chromen-6-yl)-1-methyl-3,6-dioxa­bicyclo­[3.1.0]hexan-2-yl acetate

Wong Phakhodee a, Surat Laphookhieo a, Timothy John Prior b, Apinpus Rujiwatra c,*
PMCID: PMC3589005  PMID: 23476241

Abstract

In the title compound, C17H16O7, which was isolated from the leaves of Micromelum integerrimum, the furan ring adopts an envelope conformation with the O atom as the flap. An intra­molecular C—H⋯O hydrogen bond occurs. The carbonyl O atom is disordered in a 0.57 (8):0.43 (8) ratio. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds into a C(10) chain along [010].

Related literature  

Micromelum integerrimum is a shrub in the Rutacae family containing the coumarin mol­ecule, micromelin, as the major chemical constituent (Cassady et al., 1979). Many coumarins including micromelin have been extracted from Rutacae plants, and for some their cytotoxicity has been investigated (Sripisut et al., 2012; He et al., 2001). For previous reports on the isolation of micromelin (micromelumin) from a Northern Queensland collection, an Assamese collection, and a Northeast Thailand collection, see: Lamberton et al. (1967); Das et al. (1984); Siridechakorn et al. (2012). For detailed H1 NMR spectroscopic data, see: Das et al. (1984); Siridechakorn et al. (2012). For a phytochemical investigation, see: Siridechakorn et al. (2012). For a closely related micromelin structure, C15H12O6, see: Fun et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For puckering parameters, see: Cremer & Pople (1975).graphic file with name e-68-o3421-scheme1.jpg

Experimental  

Crystal data  

  • C17H16O7

  • M r = 332.31

  • Monoclinic, Inline graphic

  • a = 10.4825 (16) Å

  • b = 6.9213 (9) Å

  • c = 11.0212 (18) Å

  • β = 95.970 (7)°

  • V = 795.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.64 × 0.32 × 0.24 mm

Data collection  

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997) T min = 0.653, T max = 0.746

  • 4381 measured reflections

  • 2123 independent reflections

  • 1692 reflections with I > 2σ(I)

  • R int = 0.021

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.136

  • S = 1.06

  • 2123 reflections

  • 223 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812047617/bx2427sup1.cif

e-68-o3421-sup1.cif (17.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812047617/bx2427Isup2.hkl

e-68-o3421-Isup2.hkl (102.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O19A i 1.07 (3) 2.46 (2) 3.064 (8) 114 (1)
C5—H5⋯O13 1.01 (3) 2.58 (3) 3.403 (3) 139 (1)
C12—H12⋯O2ii 0.98 2.35 3.282 (5) 158
C16—H16B⋯O2iii 0.96 2.54 3.419 (4) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The Thailand Research Fund is acknowledged for a research grant.

supplementary crystallographic information

Comment

Micromelum integerrimum is a shrub in the Rutacae family containing the coumarin molecule, micromilin, as the major chemical constituent (Cassady et al., 1979). Many coumarins including micromilin have been extracted from Rutacae plants, and for some their cytotoxicity has been investigated (Sripisut et al., 2012; He et al., 2001). In the attempt to investigate the chemical constitutents of the extract of Micromelum integerrimum leaves collected from Chiang Rai province in the Northern part of Thailand (March 2012), the colourless crystals of the title compound have been isolated and examined.

The absolute configurations of the four chiral centres in the molecule, (I) (C11, C12, C13, and C14) were assigned from a previous report (Das et al., 1984) as R, R, R and S, respectively. The benzene and dihydropyran ring system (C2–C10/O1) and also the carboxyl O2 and the methoxy O3 atoms are co-planar with the r.m.s. 0.004 (3) Å (Spek, 2009). A deviation of atoms O2 and O3 from the benzene and dihydropyran ring system are 0.028 (2) Å and 0.040 (2) Å, respectively. The five-membered furan ring (C11–C14/O11) shows envelope conformation with the puckering atom O11 of 0.075 (2) Å, and forms an angle of 66.11 (9)° to the twelve-membered benzene–dihydropyran due to free rotation about the C6—C11 bond. The puckering parameters Q and φ of the furan ring are 0.116 (2) Å and 176.4 (12)°, respectively (Cremer & Pople, 1975). The orientation of the oxiran ring (C12–C13/O12) attached to the furan can be defined by the dihedral angle being 79.5 (2)° with atom O12 of the oxirane ring located 1.250 (2) Å away from the furan plane. Regarding the acetate group, atom O19 shows minor positional disorder over two sites. The acetate O13 is arranged at 64.19 (15)° in reference to the furan plane, and the torsion angle measured on C14–O13–C17–C18 is 171.6 (2)°.In the crystal of (I), the molecules are linked by weak C—H···O hydrogen-bonding interactions into a chain along [010] with set-graph notation C(10), (Bernstein, et al., 1995)

Experimental

The title compound was obtained from an acetone extract of Micromelum integerrimum leaves (0.55 kg), which are collected from Chiang Rai Province, Thailand. From seven fractions (A—G) yielded by column chromatography using hexanes-acetone, the title compound (295.9 mg) was isolated from fraction D by also column chromatography using 2% acetone-CH2Cl2. The crystals were then crystallized by slowly evaporation of the solvent.

Refinement

The carbonyl group O atom is disordered over two sets of sites in a 0.57 (8):0.43 (8) ratio.Friedel opposites were merged in the final cycles of refinement as there is no appreciable anomalous scattering at the wavelength used for data collection. H atoms were placed in geometrically idealized positions (C—H= 0.91-1.06 Å, C(methyl)—H=0.96Å and were constrained to ride on their parects atoms with Uiso(H)= 1.2Ueq(C) and 1.5Ueq(C) respectively , except H3, H4, H5, and H8, were refined freely, with isotropic displacement parameters.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound. Displacement ellipsoids are drawn at 50% probability level.

Fig. 2.

Fig. 2.

A view of (I), showing the C(10) chains along [010] constructed via C—H···O hydrogen bonds. Hydrogen bonds are depicted as dashed lines [symmetry-code:(i) -x,1/2+y, 1-z]

Crystal data

C17H16O7 F(000) = 348
Mr = 332.31 Dx = 1.388 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 3003 reflections
a = 10.4825 (16) Å θ = 1.9–28.3°
b = 6.9213 (9) Å µ = 0.11 mm1
c = 11.0212 (18) Å T = 298 K
β = 95.970 (7)° Block, colourless
V = 795.3 (2) Å3 0.64 × 0.32 × 0.24 mm
Z = 2

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 2123 independent reflections
Radiation source: fine-focus sealed tube 1692 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.021
ω scans θmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 1997) h = −13→8
Tmin = 0.653, Tmax = 0.746 k = −7→9
4381 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0701P)2 + 0.1456P] where P = (Fo2 + 2Fc2)/3
2123 reflections (Δ/σ)max < 0.001
223 parameters Δρmax = 0.47 e Å3
2 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 −0.09274 (16) 0.0334 (4) 0.56547 (17) 0.0485 (5)
C2 −0.2211 (2) 0.0363 (5) 0.5224 (3) 0.0509 (6)
O2 −0.2958 (2) 0.0392 (4) 0.5982 (2) 0.0701 (7)
C3 −0.2509 (2) 0.0355 (5) 0.3921 (3) 0.0542 (7)
H3 −0.335 (3) 0.0402 (6) 0.3602 (13) 0.065*
C4 −0.1595 (2) 0.0280 (5) 0.3155 (3) 0.0490 (6)
H4 −0.1858 (8) 0.0256 (5) 0.219 (3) 0.059*
C5 0.0765 (2) 0.0093 (4) 0.2907 (2) 0.0434 (6)
H5 0.0579 (6) 0.0024 (5) 0.199 (3) 0.052*
C6 0.2015 (2) 0.0050 (4) 0.3416 (2) 0.0438 (6)
C7 0.2260 (2) 0.0189 (4) 0.4699 (2) 0.0425 (5)
O3 0.35235 (16) 0.0218 (4) 0.51324 (18) 0.0587 (6)
C16 0.3858 (3) 0.0418 (6) 0.6410 (3) 0.0572 (7)
H16A 0.3431 0.1526 0.6702 0.086*
H16B 0.4769 0.0582 0.6572 0.086*
H16C 0.3600 −0.0719 0.6820 0.086*
C8 0.1272 (2) 0.0280 (5) 0.5436 (2) 0.0423 (5)
H8 0.1452 (6) 0.0344 (5) 0.633 (3) 0.051*
C9 0.0026 (2) 0.0280 (4) 0.4886 (2) 0.0389 (5)
C10 −0.0266 (2) 0.0232 (4) 0.3624 (2) 0.0408 (5)
C11 0.3156 (3) −0.0214 (5) 0.2692 (3) 0.0502 (7)
H11 0.3788 −0.1042 0.3159 0.060*
O11 0.2824 (2) −0.1069 (4) 0.1510 (2) 0.0606 (6)
C12 0.3783 (3) 0.1663 (6) 0.2434 (3) 0.0563 (8)
H12 0.3774 0.2751 0.3003 0.068*
O12 0.48617 (19) 0.1365 (5) 0.1725 (2) 0.0697 (7)
C13 0.3647 (3) 0.1984 (6) 0.1116 (3) 0.0621 (8)
C14 0.2937 (3) 0.0253 (6) 0.0571 (3) 0.0599 (8)
H14 0.3396 −0.0323 −0.0070 0.072*
O13 0.1675 (2) 0.0904 (4) 0.00763 (19) 0.0656 (7)
C15 0.3633 (4) 0.3895 (9) 0.0470 (4) 0.0931 (14)
H15A 0.2762 0.4289 0.0248 0.140*
H15B 0.4066 0.3773 −0.0252 0.140*
H15C 0.4062 0.4845 0.1000 0.140*
C17 0.1085 (3) −0.0092 (6) −0.0852 (3) 0.0652 (9)
C18 −0.0245 (4) 0.0466 (8) −0.1189 (4) 0.0793 (11)
H18A −0.0547 −0.0112 −0.1957 0.119*
H18B −0.0301 0.1847 −0.1258 0.119*
H18C −0.0762 0.0031 −0.0573 0.119*
O19A 0.1483 (6) −0.1679 (10) −0.1149 (6) 0.0843 (12)* 0.567 (8)
O19B 0.1763 (7) −0.0896 (14) −0.1535 (7) 0.0843 (12)* 0.433 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0370 (8) 0.0543 (11) 0.0556 (10) 0.0019 (10) 0.0112 (7) 0.0022 (11)
C2 0.0374 (12) 0.0414 (14) 0.0750 (18) 0.0000 (13) 0.0113 (12) 0.0053 (16)
O2 0.0463 (10) 0.0742 (16) 0.0943 (16) −0.0031 (13) 0.0283 (10) 0.0057 (15)
C3 0.0318 (11) 0.0494 (15) 0.0794 (19) −0.0042 (14) −0.0037 (11) 0.0071 (17)
C4 0.0404 (12) 0.0459 (14) 0.0585 (15) −0.0051 (14) −0.0054 (11) 0.0033 (15)
C5 0.0440 (12) 0.0436 (14) 0.0424 (12) −0.0009 (12) 0.0030 (10) 0.0011 (12)
C6 0.0382 (11) 0.0446 (15) 0.0489 (13) 0.0013 (12) 0.0067 (10) −0.0025 (13)
C7 0.0328 (10) 0.0427 (13) 0.0513 (13) 0.0040 (12) 0.0007 (9) 0.0008 (13)
O3 0.0323 (8) 0.0833 (16) 0.0599 (11) 0.0021 (12) 0.0015 (7) −0.0034 (13)
C16 0.0388 (12) 0.0655 (19) 0.0640 (16) 0.0071 (15) −0.0103 (11) −0.0031 (17)
C8 0.0380 (11) 0.0451 (13) 0.0433 (12) 0.0010 (13) 0.0016 (9) −0.0007 (13)
C9 0.0344 (10) 0.0341 (11) 0.0486 (12) 0.0009 (12) 0.0059 (9) 0.0029 (12)
C10 0.0354 (10) 0.0373 (12) 0.0491 (12) −0.0022 (12) 0.0006 (9) 0.0003 (12)
C11 0.0416 (13) 0.0589 (18) 0.0509 (14) 0.0051 (13) 0.0080 (11) −0.0103 (13)
O11 0.0620 (13) 0.0600 (12) 0.0615 (13) 0.0007 (11) 0.0147 (10) −0.0160 (11)
C12 0.0384 (13) 0.075 (2) 0.0578 (16) −0.0085 (15) 0.0171 (12) −0.0156 (16)
O12 0.0379 (10) 0.110 (2) 0.0636 (13) −0.0054 (12) 0.0170 (9) −0.0161 (14)
C13 0.0450 (15) 0.082 (2) 0.0624 (18) −0.0085 (17) 0.0210 (13) −0.0089 (18)
C14 0.0442 (13) 0.083 (2) 0.0541 (15) 0.0060 (18) 0.0143 (11) −0.0172 (18)
O13 0.0501 (11) 0.0877 (18) 0.0588 (12) 0.0055 (11) 0.0046 (9) −0.0196 (12)
C15 0.081 (3) 0.104 (3) 0.099 (3) −0.023 (3) 0.030 (2) 0.021 (3)
C17 0.0663 (18) 0.083 (3) 0.0468 (14) 0.0084 (18) 0.0062 (13) −0.0103 (16)
C18 0.071 (2) 0.092 (3) 0.072 (2) −0.001 (2) −0.0103 (17) 0.006 (2)

Geometric parameters (Å, º)

O1—C9 1.377 (3) C11—O11 1.441 (3)
O1—C2 1.380 (3) C11—C12 1.496 (5)
C2—O2 1.203 (3) C11—H11 0.9800
C2—C3 1.438 (4) O11—C14 1.396 (5)
C3—C4 1.343 (4) C12—O12 1.455 (3)
C3—H3 0.9168 C12—C13 1.463 (4)
C4—C10 1.435 (3) C12—H12 0.9800
C4—H4 1.0676 O12—C13 1.441 (4)
C5—C6 1.371 (3) C13—C15 1.501 (7)
C5—C10 1.406 (3) C13—C14 1.502 (5)
C5—H5 1.0053 C14—O13 1.450 (4)
C6—C7 1.413 (4) C14—H14 0.9800
C6—C11 1.517 (3) O13—C17 1.332 (4)
C7—O3 1.361 (3) C15—H15A 0.9600
C7—C8 1.383 (3) C15—H15B 0.9600
O3—C16 1.422 (3) C15—H15C 0.9600
C16—H16A 0.9600 C17—O19B 1.222 (7)
C16—H16B 0.9600 C17—O19A 1.231 (7)
C16—H16C 0.9600 C17—C18 1.456 (5)
C8—C9 1.382 (3) C18—H18A 0.9600
C8—H8 0.9857 C18—H18B 0.9600
C9—C10 1.393 (4) C18—H18C 0.9600
C9—O1—C2 122.2 (2) C6—C11—H11 108.7
O2—C2—O1 116.3 (3) C14—O11—C11 111.7 (3)
O2—C2—C3 127.2 (3) O12—C12—C13 59.20 (19)
O1—C2—C3 116.5 (2) O12—C12—C11 111.1 (3)
C4—C3—C2 122.2 (2) C13—C12—C11 108.8 (3)
C4—C3—H3 118.9 O12—C12—H12 120.8
C2—C3—H3 118.9 C13—C12—H12 120.8
C3—C4—C10 120.3 (2) C11—C12—H12 120.8
C3—C4—H4 119.9 C13—O12—C12 60.65 (19)
C10—C4—H4 119.9 O12—C13—C12 60.14 (19)
C6—C5—C10 121.9 (2) O12—C13—C15 116.6 (3)
C6—C5—H5 119.0 C12—C13—C15 126.9 (4)
C10—C5—H5 119.0 O12—C13—C14 109.0 (3)
C5—C6—C7 118.4 (2) C12—C13—C14 105.6 (3)
C5—C6—C11 124.1 (2) C15—C13—C14 122.2 (3)
C7—C6—C11 117.6 (2) O11—C14—O13 109.8 (2)
O3—C7—C8 123.6 (2) O11—C14—C13 107.6 (3)
O3—C7—C6 115.0 (2) O13—C14—C13 107.3 (3)
C8—C7—C6 121.4 (2) O11—C14—H14 110.7
C7—O3—C16 118.7 (2) O13—C14—H14 110.7
O3—C16—H16A 109.5 C13—C14—H14 110.7
O3—C16—H16B 109.5 C17—O13—C14 117.4 (3)
H16A—C16—H16B 109.5 C13—C15—H15A 109.5
O3—C16—H16C 109.5 C13—C15—H15B 109.5
H16A—C16—H16C 109.5 H15A—C15—H15B 109.5
H16B—C16—H16C 109.5 C13—C15—H15C 109.5
C9—C8—C7 118.3 (2) H15A—C15—H15C 109.5
C9—C8—H8 120.9 H15B—C15—H15C 109.5
C7—C8—H8 120.9 O19B—C17—O13 117.1 (4)
O1—C9—C8 116.3 (2) O19A—C17—O13 121.5 (4)
O1—C9—C10 121.2 (2) O19B—C17—C18 124.5 (4)
C8—C9—C10 122.5 (2) O19A—C17—C18 120.7 (4)
C9—C10—C5 117.4 (2) O13—C17—C18 114.4 (3)
C9—C10—C4 117.6 (2) C17—C18—H18A 109.5
C5—C10—C4 125.0 (2) C17—C18—H18B 109.5
O11—C11—C12 104.7 (2) H18A—C18—H18B 109.5
O11—C11—C6 113.3 (2) C17—C18—H18C 109.5
C12—C11—C6 112.4 (2) H18A—C18—H18C 109.5
O11—C11—H11 108.7 H18B—C18—H18C 109.5
C12—C11—H11 108.7

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H4···O19Ai 1.07 (3) 2.46 (2) 3.064 (8) 114 (1)
C5—H5···O13 1.01 (3) 2.58 (3) 3.403 (3) 139 (1)
C12—H12···O2ii 0.98 2.35 3.282 (5) 158
C16—H16B···O2iii 0.96 2.54 3.419 (4) 153

Symmetry codes: (i) −x, y+1/2, −z; (ii) −x, y+1/2, −z+1; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2427).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Brandenburg, K. (2007). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (1997). SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2008). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cassady, J. M., Ojima, N., Chang, C. J. & McLaughlin, J. L. (1979). J. Nat. Prod. 42, 274–278. [DOI] [PubMed]
  6. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  7. Das, S., Baruah, R. H., Sharma, R. P., Barua, J. N., Kulanthaivel, P. & Herz, W. (1984). Phytochemistry, 23, 2317–2321.
  8. Fun, H.-K., Siridechakorn, I., Laphookhieo, S. & Chantrapromma, S. (2011). Acta Cryst. E67, o1706–o1707. [DOI] [PMC free article] [PubMed]
  9. He, H. P., Zou, Y., Shen, Y. M., Hao, X. Y., Zuo, G. Y. & Hao, X. J. (2001). Chin. Chem. Lett. 12, 603–606.
  10. Lamberton, J. A., Price, J. R. & Redcliffe, A. H. (1967). Aust. J. Chem. 20, 973–979.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Siridechakorn, I., Ritthiwigrom, T. & Laphookhieo, S. (2012). Biochem. Syst. Ecol. 40, 69–70.
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Sripisut, T., Cheenpracha, S., Ritthiwigrom, T., Prawat, U. & Laphookhieo, S. (2012). Rec. Nat. Prod. 6, 386–389.
  15. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812047617/bx2427sup1.cif

e-68-o3421-sup1.cif (17.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812047617/bx2427Isup2.hkl

e-68-o3421-Isup2.hkl (102.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES