Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 24;68(Pt 12):o3424. doi: 10.1107/S1600536812047496

N-(3-Chloro­phen­yl)-4-nitro­benzene­sulfonamide

U Chaithanya a, Sabine Foro b, B Thimme Gowda a,*
PMCID: PMC3589007  PMID: 23476243

Abstract

There are two independent mol­ecules in the asymmetric unit of the title compound, C12H9ClN2O4S, in which the dihedral angles between the planes of the benzene rings are 46.90 (14) and 44.50 (14)°. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into zigzag chains parallel to the a axis.

Related literature  

For studies on the effects of substituents on the structures and other aspects of N-aryl­sulfonamides, see: Chaithanya et al. (2012); Gowda et al. (2002) and of N-chloro­aryl­amides, see: Gowda & Shetty (2004); Gowda & Weiss (1994); Shetty & Gowda (2004).graphic file with name e-68-o3424-scheme1.jpg

Experimental  

Crystal data  

  • C12H9ClN2O4S

  • M r = 312.72

  • Monoclinic, Inline graphic

  • a = 14.3419 (8) Å

  • b = 7.7579 (4) Å

  • c = 23.895 (1) Å

  • β = 90.345 (5)°

  • V = 2658.6 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 293 K

  • 0.48 × 0.40 × 0.20 mm

Data collection  

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.810, T max = 0.914

  • 9649 measured reflections

  • 4839 independent reflections

  • 3112 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.062

  • wR(F 2) = 0.163

  • S = 1.05

  • 4839 reflections

  • 367 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812047496/bt6857sup1.cif

e-68-o3424-sup1.cif (30.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812047496/bt6857Isup2.hkl

e-68-o3424-Isup2.hkl (237KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812047496/bt6857Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O8 0.87 (2) 2.22 (2) 3.052 (4) 163 (3)
N3—H3N⋯O4i 0.85 (2) 2.36 (2) 3.135 (4) 153 (4)

Symmetry code: (i) Inline graphic.

Acknowledgments

BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under UGC–BSR one-time grant to faculty and the Department of Science and Technology, Government of India, New Delhi, for the research grant under its promotion of university research and scientific excellence programme.

supplementary crystallographic information

Comment

As a part of studying the effect of substituents on the structures and other aspects of N-arylsulfonamides (Chaithanya et al., 2012; Gowda et al., 2002) and N-chloroarylamides (Gowda & Shetty, 2004; Gowda & Weiss, 1994; Shetty & Gowda, 2004), in the present work, the crystal structure of N-(3-chlorophenyl)-4-nitrobenzenesulfonamide (I) has been determined (Fig. 1). The asymmetric unit of the structure contains two independent molecules. The N—C bonds in the C—SO2—NH—C segments have gauche torsions with respect to the S═O bonds.

The molecules in (I) are twisted at the S—N bonds with the torsional angles of -58.67 (30) and 61.49 (30)°, compared to the value of 48.46 (18)° in N-(3-chlorophenyl)-2-nitrobenzenesulfonamide (II) (Chaithanya et al., 2012).

The dihedral angle between the sulfonyl and the anilino rings are 46.90 (14) and 44.50 (14)°, compared to the value of 73.65 (7)° in (II).

N—H···O hydrogen bonds link the molecules into zigzag chains parallel to the a-axis. (Table 1, Fig. 2.)

Experimental

The title compound was prepared by treating 4-nitrobenzenesulfonyl- chloride with 3-chloroaniline in the stoichiometric ratio and boiling the reaction mixture for 15 minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml).

The resultant solid N-(3-chlorophenyl)-4-nitrobenzenesulfonamide was filtered under suction and washed thoroughly with cold water and dilute HCl to remove the excess sulfonylchloride and aniline, respectively. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by its infrared spectra.

Prism like colourless single crystals of the title compound used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation of the solvent at room temperature.

Refinement

H atoms bonded to C were positioned with idealized geometry using a riding model with aromatic C—H = 0.93 Å. The amino H atoms were freely refined with the N—H distance restrained to 0.86 (2) Å. All H atoms were refined with isotropic displacement parameters set at 1.2 Ueq of the parent atom. The (-1 0 3) reflection had a poor disagreement with its calculated value and was omitted from the refinement.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom labelling scheme and with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C12H9ClN2O4S F(000) = 1280
Mr = 312.72 Dx = 1.563 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3273 reflections
a = 14.3419 (8) Å θ = 2.6–27.8°
b = 7.7579 (4) Å µ = 0.46 mm1
c = 23.895 (1) Å T = 293 K
β = 90.345 (5)° Prism, colourless
V = 2658.6 (2) Å3 0.48 × 0.40 × 0.20 mm
Z = 8

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 4839 independent reflections
Radiation source: fine-focus sealed tube 3112 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
Rotation method data acquisition using ω scans θmax = 25.4°, θmin = 2.8°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −9→17
Tmin = 0.810, Tmax = 0.914 k = −9→5
9649 measured reflections l = −27→28

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0682P)2 + 2.2606P] where P = (Fo2 + 2Fc2)/3
4839 reflections (Δ/σ)max = 0.009
367 parameters Δρmax = 0.83 e Å3
2 restraints Δρmin = −0.29 e Å3

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.09787 (10) −0.35505 (17) 0.01810 (6) 0.0946 (5)
S1 0.16559 (6) 0.12543 (12) 0.20178 (4) 0.0434 (3)
O1 0.11688 (19) −0.0333 (3) 0.20733 (11) 0.0562 (7)
O2 0.22431 (18) 0.1878 (4) 0.24582 (11) 0.0627 (8)
O3 −0.1904 (2) 0.6207 (4) 0.12567 (15) 0.0788 (10)
O4 −0.0928 (2) 0.8146 (4) 0.14880 (15) 0.0823 (10)
N1 0.23212 (19) 0.1114 (4) 0.14670 (14) 0.0452 (8)
H1N 0.272 (2) 0.194 (4) 0.1439 (15) 0.054*
N2 −0.1143 (2) 0.6643 (5) 0.14311 (14) 0.0566 (9)
C1 0.0817 (2) 0.2853 (4) 0.18560 (14) 0.0353 (8)
C2 0.1026 (2) 0.4570 (4) 0.19499 (15) 0.0423 (9)
H2 0.1599 0.4877 0.2104 0.051*
C3 0.0387 (2) 0.5819 (4) 0.18147 (15) 0.0442 (9)
H3 0.0514 0.6978 0.1878 0.053*
C4 −0.0450 (2) 0.5309 (4) 0.15819 (14) 0.0405 (8)
C5 −0.0679 (2) 0.3612 (5) 0.14868 (16) 0.0500 (10)
H5 −0.1253 0.3313 0.1332 0.060*
C6 −0.0030 (2) 0.2365 (5) 0.16275 (16) 0.0469 (9)
H6 −0.0163 0.1205 0.1569 0.056*
C7 0.1911 (2) 0.0681 (5) 0.09334 (15) 0.0413 (9)
C8 0.1675 (2) −0.1024 (5) 0.08276 (17) 0.0482 (10)
H8 0.1777 −0.1874 0.1095 0.058*
C9 0.1285 (3) −0.1422 (5) 0.03155 (18) 0.0544 (10)
C10 0.1144 (3) −0.0199 (7) −0.00864 (18) 0.0658 (12)
H10 0.0883 −0.0494 −0.0431 0.079*
C11 0.1395 (3) 0.1489 (6) 0.00264 (18) 0.0668 (12)
H11 0.1305 0.2334 −0.0245 0.080*
C12 0.1773 (3) 0.1921 (5) 0.05326 (17) 0.0549 (10)
H12 0.1937 0.3058 0.0606 0.066*
Cl2 0.61875 (14) 1.53899 (18) 0.02541 (7) 0.1192 (6)
S2 0.66256 (6) 1.03064 (12) 0.20747 (4) 0.0478 (3)
O5 0.61482 (19) 1.1899 (3) 0.21387 (12) 0.0583 (7)
O6 0.72154 (19) 0.9650 (4) 0.25102 (12) 0.0703 (9)
O7 0.3061 (2) 0.5453 (4) 0.12695 (15) 0.0789 (10)
O8 0.4020 (2) 0.3483 (4) 0.15000 (17) 0.0907 (11)
N3 0.7282 (2) 1.0461 (4) 0.15232 (15) 0.0503 (8)
H3N 0.762 (2) 0.958 (4) 0.1481 (16) 0.060*
N4 0.3811 (2) 0.4986 (5) 0.14497 (14) 0.0568 (9)
C13 0.5779 (2) 0.8725 (4) 0.19141 (14) 0.0373 (8)
C14 0.5992 (2) 0.6997 (5) 0.19794 (16) 0.0470 (9)
H14 0.6570 0.6670 0.2122 0.056*
C15 0.5345 (2) 0.5764 (5) 0.18336 (16) 0.0486 (10)
H15 0.5474 0.4598 0.1880 0.058*
C16 0.4501 (2) 0.6303 (5) 0.16172 (15) 0.0421 (9)
C17 0.4269 (2) 0.8010 (5) 0.15583 (15) 0.0464 (9)
H17 0.3685 0.8331 0.1423 0.056*
C18 0.4919 (2) 0.9235 (5) 0.17029 (15) 0.0437 (9)
H18 0.4783 1.0400 0.1660 0.052*
C19 0.6866 (2) 1.0996 (5) 0.10019 (16) 0.0448 (9)
C20 0.6731 (3) 1.2725 (5) 0.08980 (18) 0.0516 (10)
H20 0.6901 1.3547 0.1163 0.062*
C21 0.6343 (3) 1.3211 (5) 0.0398 (2) 0.0633 (12)
C22 0.6084 (3) 1.2024 (6) 0.00016 (19) 0.0672 (12)
H22 0.5809 1.2385 −0.0332 0.081*
C23 0.6231 (3) 1.0320 (6) 0.0097 (2) 0.0692 (13)
H23 0.6067 0.9511 −0.0173 0.083*
C24 0.6630 (3) 0.9787 (5) 0.06058 (19) 0.0592 (11)
H24 0.6734 0.8623 0.0674 0.071*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1078 (11) 0.0610 (8) 0.1148 (11) −0.0144 (7) −0.0227 (9) −0.0310 (8)
S1 0.0416 (5) 0.0361 (5) 0.0524 (6) 0.0073 (4) −0.0107 (4) 0.0001 (4)
O1 0.0621 (17) 0.0330 (15) 0.0736 (19) 0.0044 (13) 0.0006 (14) 0.0137 (13)
O2 0.0595 (17) 0.0634 (19) 0.0648 (18) 0.0187 (15) −0.0274 (14) −0.0094 (15)
O3 0.0481 (18) 0.075 (2) 0.113 (3) 0.0106 (16) −0.0208 (18) 0.0294 (19)
O4 0.087 (2) 0.0378 (18) 0.122 (3) 0.0197 (17) −0.020 (2) 0.0079 (18)
N1 0.0314 (16) 0.0350 (18) 0.069 (2) −0.0020 (13) −0.0051 (15) −0.0042 (16)
N2 0.056 (2) 0.053 (2) 0.061 (2) 0.0157 (18) 0.0009 (17) 0.0160 (18)
C1 0.0341 (18) 0.0297 (19) 0.042 (2) 0.0035 (15) −0.0032 (15) −0.0025 (16)
C2 0.0317 (18) 0.038 (2) 0.057 (2) −0.0035 (16) −0.0079 (16) −0.0043 (18)
C3 0.046 (2) 0.0253 (19) 0.061 (2) −0.0012 (16) −0.0008 (19) 0.0000 (17)
C4 0.0397 (19) 0.035 (2) 0.047 (2) 0.0074 (16) 0.0010 (16) 0.0079 (17)
C5 0.038 (2) 0.045 (2) 0.067 (3) −0.0046 (17) −0.0137 (18) −0.002 (2)
C6 0.042 (2) 0.033 (2) 0.066 (3) −0.0026 (17) −0.0122 (19) −0.0047 (18)
C7 0.0292 (18) 0.040 (2) 0.055 (2) 0.0028 (16) 0.0045 (16) −0.0034 (18)
C8 0.043 (2) 0.037 (2) 0.065 (3) 0.0010 (17) 0.0002 (19) 0.0002 (19)
C9 0.046 (2) 0.050 (3) 0.066 (3) −0.0033 (19) 0.001 (2) −0.013 (2)
C10 0.061 (3) 0.083 (4) 0.053 (3) 0.007 (3) −0.002 (2) −0.009 (3)
C11 0.074 (3) 0.069 (3) 0.057 (3) 0.007 (3) 0.001 (2) 0.013 (2)
C12 0.059 (3) 0.042 (2) 0.063 (3) 0.001 (2) 0.007 (2) 0.002 (2)
Cl2 0.1649 (16) 0.0543 (8) 0.1379 (14) −0.0001 (9) −0.0415 (12) 0.0214 (9)
S2 0.0420 (5) 0.0396 (6) 0.0615 (6) −0.0079 (4) −0.0109 (5) −0.0029 (5)
O5 0.0621 (17) 0.0346 (15) 0.0783 (19) −0.0044 (13) 0.0024 (14) −0.0155 (14)
O6 0.0623 (18) 0.072 (2) 0.0765 (19) −0.0191 (16) −0.0324 (16) 0.0079 (16)
O7 0.0486 (17) 0.076 (2) 0.112 (3) −0.0156 (16) −0.0221 (18) −0.0165 (19)
O8 0.083 (2) 0.0390 (19) 0.150 (3) −0.0190 (17) −0.019 (2) −0.006 (2)
N3 0.0324 (17) 0.0358 (19) 0.083 (2) 0.0028 (13) −0.0023 (16) 0.0026 (17)
N4 0.052 (2) 0.050 (2) 0.068 (2) −0.0148 (18) −0.0021 (18) −0.0091 (19)
C13 0.0332 (18) 0.0322 (19) 0.046 (2) 0.0006 (15) −0.0018 (15) −0.0003 (16)
C14 0.037 (2) 0.041 (2) 0.063 (2) 0.0035 (17) −0.0058 (18) 0.0061 (19)
C15 0.045 (2) 0.030 (2) 0.071 (3) 0.0015 (17) 0.002 (2) 0.0024 (18)
C16 0.0378 (19) 0.039 (2) 0.049 (2) −0.0060 (17) 0.0010 (17) −0.0050 (17)
C17 0.0353 (19) 0.045 (2) 0.058 (2) 0.0016 (17) −0.0088 (17) −0.0015 (19)
C18 0.043 (2) 0.0287 (19) 0.060 (2) 0.0035 (16) −0.0083 (18) 0.0019 (17)
C19 0.0335 (19) 0.039 (2) 0.062 (3) −0.0053 (16) 0.0090 (18) 0.0008 (19)
C20 0.046 (2) 0.034 (2) 0.075 (3) −0.0039 (17) −0.001 (2) −0.001 (2)
C21 0.066 (3) 0.043 (2) 0.082 (3) −0.003 (2) 0.000 (2) 0.013 (2)
C22 0.071 (3) 0.064 (3) 0.066 (3) −0.005 (3) −0.006 (2) 0.001 (3)
C23 0.071 (3) 0.064 (3) 0.073 (3) −0.011 (3) 0.011 (3) −0.023 (3)
C24 0.057 (3) 0.041 (2) 0.080 (3) −0.005 (2) 0.012 (2) −0.012 (2)

Geometric parameters (Å, º)

Cl1—C9 1.738 (4) Cl2—C21 1.739 (4)
S1—O1 1.423 (3) S2—O5 1.421 (3)
S1—O2 1.428 (3) S2—O6 1.431 (3)
S1—N1 1.634 (3) S2—N3 1.629 (3)
S1—C1 1.770 (3) S2—C13 1.767 (3)
O3—N2 1.215 (4) O7—N4 1.211 (4)
O4—N2 1.214 (4) O8—N4 1.209 (4)
N1—C7 1.441 (5) N3—C19 1.439 (5)
N1—H1N 0.865 (18) N3—H3N 0.845 (18)
N2—C4 1.478 (4) N4—C16 1.476 (4)
C1—C6 1.382 (4) C13—C14 1.383 (5)
C1—C2 1.383 (5) C13—C18 1.388 (5)
C2—C3 1.371 (5) C14—C15 1.376 (5)
C2—H2 0.9300 C14—H14 0.9300
C3—C4 1.377 (5) C15—C16 1.379 (5)
C3—H3 0.9300 C15—H15 0.9300
C4—C5 1.375 (5) C16—C17 1.373 (5)
C5—C6 1.382 (5) C17—C18 1.373 (5)
C5—H5 0.9300 C17—H17 0.9300
C6—H6 0.9300 C18—H18 0.9300
C7—C12 1.371 (5) C19—C24 1.373 (5)
C7—C8 1.388 (5) C19—C20 1.378 (5)
C8—C9 1.377 (5) C20—C21 1.368 (6)
C8—H8 0.9300 C20—H20 0.9300
C9—C10 1.364 (6) C21—C22 1.371 (6)
C10—C11 1.384 (6) C22—C23 1.358 (6)
C10—H10 0.9300 C22—H22 0.9300
C11—C12 1.364 (6) C23—C24 1.402 (6)
C11—H11 0.9300 C23—H23 0.9300
C12—H12 0.9300 C24—H24 0.9300
O1—S1—O2 120.83 (17) O5—S2—O6 120.94 (18)
O1—S1—N1 107.88 (16) O5—S2—N3 107.70 (17)
O2—S1—N1 105.75 (17) O6—S2—N3 105.83 (18)
O1—S1—C1 107.07 (16) O5—S2—C13 107.24 (16)
O2—S1—C1 108.70 (16) O6—S2—C13 108.26 (17)
N1—S1—C1 105.68 (16) N3—S2—C13 105.98 (16)
C7—N1—S1 119.4 (2) C19—N3—S2 118.9 (2)
C7—N1—H1N 112 (3) C19—N3—H3N 111 (3)
S1—N1—H1N 114 (3) S2—N3—H3N 112 (3)
O3—N2—O4 122.2 (3) O8—N4—O7 122.9 (3)
O3—N2—C4 119.4 (4) O8—N4—C16 118.3 (3)
O4—N2—C4 118.4 (3) O7—N4—C16 118.8 (4)
C6—C1—C2 121.2 (3) C14—C13—C18 120.8 (3)
C6—C1—S1 119.3 (3) C14—C13—S2 119.9 (3)
C2—C1—S1 119.5 (3) C18—C13—S2 119.3 (3)
C3—C2—C1 119.9 (3) C15—C14—C13 119.9 (3)
C3—C2—H2 120.1 C15—C14—H14 120.1
C1—C2—H2 120.1 C13—C14—H14 120.1
C2—C3—C4 118.1 (3) C14—C15—C16 118.2 (3)
C2—C3—H3 120.9 C14—C15—H15 120.9
C4—C3—H3 120.9 C16—C15—H15 120.9
C5—C4—C3 123.2 (3) C17—C16—C15 122.8 (3)
C5—C4—N2 118.0 (3) C17—C16—N4 118.6 (3)
C3—C4—N2 118.7 (3) C15—C16—N4 118.5 (3)
C4—C5—C6 118.0 (3) C16—C17—C18 118.6 (3)
C4—C5—H5 121.0 C16—C17—H17 120.7
C6—C5—H5 121.0 C18—C17—H17 120.7
C1—C6—C5 119.5 (3) C17—C18—C13 119.6 (3)
C1—C6—H6 120.2 C17—C18—H18 120.2
C5—C6—H6 120.2 C13—C18—H18 120.2
C12—C7—C8 120.5 (4) C24—C19—C20 120.5 (4)
C12—C7—N1 120.7 (3) C24—C19—N3 120.0 (4)
C8—C7—N1 118.8 (3) C20—C19—N3 119.6 (4)
C9—C8—C7 118.2 (4) C21—C20—C19 118.8 (4)
C9—C8—H8 120.9 C21—C20—H20 120.6
C7—C8—H8 120.9 C19—C20—H20 120.6
C10—C9—C8 121.8 (4) C20—C21—C22 121.7 (4)
C10—C9—Cl1 119.6 (3) C20—C21—Cl2 119.4 (4)
C8—C9—Cl1 118.6 (3) C22—C21—Cl2 118.8 (4)
C9—C10—C11 118.9 (4) C23—C22—C21 119.8 (4)
C9—C10—H10 120.5 C23—C22—H22 120.1
C11—C10—H10 120.5 C21—C22—H22 120.1
C12—C11—C10 120.4 (4) C22—C23—C24 119.7 (4)
C12—C11—H11 119.8 C22—C23—H23 120.2
C10—C11—H11 119.8 C24—C23—H23 120.2
C11—C12—C7 120.1 (4) C19—C24—C23 119.6 (4)
C11—C12—H12 119.9 C19—C24—H24 120.2
C7—C12—H12 119.9 C23—C24—H24 120.2
O1—S1—N1—C7 55.6 (3) O5—S2—N3—C19 −53.0 (3)
O2—S1—N1—C7 −173.8 (3) O6—S2—N3—C19 176.3 (3)
C1—S1—N1—C7 −58.7 (3) C13—S2—N3—C19 61.5 (3)
O1—S1—C1—C6 −21.6 (3) O5—S2—C13—C14 −162.2 (3)
O2—S1—C1—C6 −153.6 (3) O6—S2—C13—C14 −30.2 (4)
N1—S1—C1—C6 93.2 (3) N3—S2—C13—C14 83.0 (3)
O1—S1—C1—C2 159.7 (3) O5—S2—C13—C18 20.2 (3)
O2—S1—C1—C2 27.6 (3) O6—S2—C13—C18 152.3 (3)
N1—S1—C1—C2 −85.5 (3) N3—S2—C13—C18 −94.6 (3)
C6—C1—C2—C3 −0.1 (6) C18—C13—C14—C15 0.1 (6)
S1—C1—C2—C3 178.6 (3) S2—C13—C14—C15 −177.5 (3)
C1—C2—C3—C4 −0.6 (5) C13—C14—C15—C16 0.9 (6)
C2—C3—C4—C5 1.0 (6) C14—C15—C16—C17 −2.1 (6)
C2—C3—C4—N2 −179.6 (3) C14—C15—C16—N4 178.8 (3)
O3—N2—C4—C5 3.8 (5) O8—N4—C16—C17 179.6 (4)
O4—N2—C4—C5 −176.4 (4) O7—N4—C16—C17 −0.5 (5)
O3—N2—C4—C3 −175.6 (4) O8—N4—C16—C15 −1.3 (5)
O4—N2—C4—C3 4.2 (5) O7—N4—C16—C15 178.6 (4)
C3—C4—C5—C6 −0.7 (6) C15—C16—C17—C18 2.3 (6)
N2—C4—C5—C6 179.9 (3) N4—C16—C17—C18 −178.6 (3)
C2—C1—C6—C5 0.4 (6) C16—C17—C18—C13 −1.3 (6)
S1—C1—C6—C5 −178.3 (3) C14—C13—C18—C17 0.2 (6)
C4—C5—C6—C1 0.0 (6) S2—C13—C18—C17 177.7 (3)
S1—N1—C7—C12 104.1 (4) S2—N3—C19—C24 −99.5 (4)
S1—N1—C7—C8 −77.1 (4) S2—N3—C19—C20 82.3 (4)
C12—C7—C8—C9 −1.1 (5) C24—C19—C20—C21 1.2 (6)
N1—C7—C8—C9 −179.9 (3) N3—C19—C20—C21 179.3 (3)
C7—C8—C9—C10 1.1 (6) C19—C20—C21—C22 0.3 (6)
C7—C8—C9—Cl1 −179.5 (3) C19—C20—C21—Cl2 −178.8 (3)
C8—C9—C10—C11 −0.4 (6) C20—C21—C22—C23 −1.5 (7)
Cl1—C9—C10—C11 −179.8 (3) Cl2—C21—C22—C23 177.6 (4)
C9—C10—C11—C12 −0.3 (7) C21—C22—C23—C24 1.2 (7)
C10—C11—C12—C7 0.3 (6) C20—C19—C24—C23 −1.4 (6)
C8—C7—C12—C11 0.4 (6) N3—C19—C24—C23 −179.5 (3)
N1—C7—C12—C11 179.2 (3) C22—C23—C24—C19 0.2 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O8 0.87 (2) 2.22 (2) 3.052 (4) 163 (3)
N3—H3N···O4i 0.85 (2) 2.36 (2) 3.135 (4) 153 (4)

Symmetry code: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6857).

References

  1. Chaithanya, U., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o2576. [DOI] [PMC free article] [PubMed]
  2. Gowda, B. T., Jyothi, K. & D’Souza, J. D. (2002). Z. Naturforsch. Teil A, 57, 967–973.
  3. Gowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848–864.
  4. Gowda, B. T. & Weiss, A. (1994). Z. Naturforsch. Teil A, 49, 695–702.
  5. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Shetty, M. & Gowda, B. T. (2004). Z. Naturforsch. Teil B, 59, 63–72.
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812047496/bt6857sup1.cif

e-68-o3424-sup1.cif (30.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812047496/bt6857Isup2.hkl

e-68-o3424-Isup2.hkl (237KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812047496/bt6857Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES