Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 24;68(Pt 12):o3425. doi: 10.1107/S1600536812047502

N-(3,5-Dimethyl­phen­yl)-4-nitro­benzene­sulfonamide

U Chaithanya a, Sabine Foro b, B Thimme Gowda a,*
PMCID: PMC3589008  PMID: 23476244

Abstract

There are two independent mol­ecules in the asymmetric unit of the title compound, C14H14N2O4S, in which the dihedral angles between the benzene rings are 56.22 (15) and 58.16 (14)°. In the crystal, N—H⋯Onitro hydrogen bonds link the mol­ecules into zigzag chains running along the a-axis direction.

Related literature  

For studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Gowda & Weiss (1994); Shahwar et al. (2012), of N-aryl­sulfonamides, see: Chaithanya et al. (2012) and of N-chloro­aryl­sulfonamides, see: Shetty & Gowda (2004). For hydrogen-bonding patterns and motifs, see: Adsmond & Grant (2001).graphic file with name e-68-o3425-scheme1.jpg

Experimental  

Crystal data  

  • C14H14N2O4S

  • M r = 306.33

  • Orthorhombic, Inline graphic

  • a = 14.708 (1) Å

  • b = 7.9410 (7) Å

  • c = 24.741 (2) Å

  • V = 2889.7 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.38 × 0.30 × 0.24 mm

Data collection  

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.914, T max = 0.944

  • 6693 measured reflections

  • 3714 independent reflections

  • 2624 reflections with I > 2σ(I)

  • R int = 0.030

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.074

  • S = 1.00

  • 3714 reflections

  • 390 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983), 1005 Friedel pairs

  • Flack parameter: 0.04 (8)

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812047502/bt6865sup1.cif

e-68-o3425-sup1.cif (32.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812047502/bt6865Isup2.hkl

e-68-o3425-Isup2.hkl (182.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812047502/bt6865Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.85 (2) 2.35 (2) 3.129 (5) 152 (3)
N3—H3N⋯O8ii 0.84 (2) 2.40 (2) 3.168 (5) 152 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

UC thanks Mangalore University for the award of a research fellowship. BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under the UGC–BSR one-time grant to faculty.

supplementary crystallographic information

Comment

As a part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda & Weiss, 1994; Shahwar et al., 2012); N-arylsulfonamides (Chaithanya et al., 2012) and N-chloroarylsulfonamides (Shetty & Gowda, 2004),in the present work, the crystal structure of N-(3,5-dimethylphenyl)-4-nitrobenzenesulfonamide (I) has been determined (Fig. 1).

The asymmetric unit of the structure of (I) contains two crystallographically independent molecules, similar to that observed in N-(3,5-dimethylphenyl)-2-nitrobenzenesulfonamide (II) (Chaithanya et al., 2012). The molecules are twisted at the S—N bonds with the torsional angles of -66.67 (38) and -70.56 (39)°, compared to the values of 44.24 (26) and -49.34 (25)° in (II).

The dihedral angles between the sulfonyl and the anilino rings in the two molecules are 56.22 (15)° and 58.16 (14)°, compared to the values of 71.53 (7)° and 72.11 (7)° in (II).

The amide H-atom showed bifurcated intramolecular H-bonding with the O-atom of the ortho-nitro group in the sulfonyl benzene ring, generating S(7) motifs and the intermolecular H-bonding with the sulfonyl oxygen atom of the other molecule, generating C(4) motifs (Adsmond et al., 2001).

In the crystal, the intermolecular N–H···O (N) hydrogen bonds (Table 1) link the molecules into zigzag chains running along the a axis. Part of the crystal structure is shown in Fig. 2.

Experimental

The title compound was prepared by treating 4-nitrobenzenesulfonylchloride with 3,5-dimethylaniline in the stoichiometric ratio and boiling the reaction mixture for 15 minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid, N-(3,5-dimethylphenyl)-4-nitrobenzenesulfonamide was filtered under suction and washed thoroughly with cold water and dilute HCl to remove the excess sulfonylchloride and aniline, respectively. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by its infrared spectra.

Prism like colourless single crystals of the title compound used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation of the solvent at room temperature.

Refinement

H atoms bonded to C were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å, methyl C—H = 0.96 Å. The amino H atoms were freely refined with the N—H distance restrained to 0.86 (2) Å. All H atoms were refined with isotropic displacement parameters set at 1.2 Ueq(C-aromatic, N) or 1.5 Ueq(C-methyl).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom labelling scheme and with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C14H14N2O4S F(000) = 1280
Mr = 306.33 Dx = 1.408 Mg m3
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 1548 reflections
a = 14.708 (1) Å θ = 2.6–27.9°
b = 7.9410 (7) Å µ = 0.24 mm1
c = 24.741 (2) Å T = 293 K
V = 2889.7 (4) Å3 Prism, colourless
Z = 8 0.38 × 0.30 × 0.24 mm

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 3714 independent reflections
Radiation source: fine-focus sealed tube 2624 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
Rotation method data acquisition using ω scans θmax = 25.4°, θmin = 2.7°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −17→6
Tmin = 0.914, Tmax = 0.944 k = −9→7
6693 measured reflections l = −16→29

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0295P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.074 (Δ/σ)max < 0.001
S = 1.00 Δρmax = 0.18 e Å3
3714 reflections Δρmin = −0.18 e Å3
390 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3 restraints Extinction coefficient: 0.0037 (3)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 1005 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: 0.04 (8)

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.20029 (7) 0.68335 (15) 0.47849 (4) 0.0495 (3)
O1 0.2499 (2) 0.8380 (4) 0.48316 (13) 0.0631 (9)
O2 0.1473 (2) 0.6216 (4) 0.52234 (12) 0.0710 (10)
O3 0.4490 (3) 0.0058 (6) 0.42894 (19) 0.1052 (15)
O4 0.5359 (3) 0.1925 (6) 0.3950 (2) 0.1156 (17)
N1 0.1295 (2) 0.7027 (5) 0.42794 (16) 0.0476 (9)
H1N 0.094 (2) 0.618 (3) 0.4263 (16) 0.057*
N2 0.4666 (3) 0.1511 (6) 0.41830 (18) 0.0681 (13)
C1 0.2802 (2) 0.5258 (5) 0.46126 (14) 0.0381 (9)
C2 0.2595 (3) 0.3583 (5) 0.47151 (17) 0.0517 (11)
H2 0.2046 0.3295 0.4877 0.062*
C3 0.3211 (3) 0.2352 (5) 0.4575 (2) 0.0550 (16)
H3 0.3089 0.1223 0.4643 0.066*
C4 0.4008 (3) 0.2829 (6) 0.43324 (19) 0.0481 (12)
C5 0.4228 (3) 0.4459 (6) 0.42402 (17) 0.0541 (12)
H5 0.4784 0.4739 0.4085 0.065*
C6 0.3614 (3) 0.5702 (5) 0.43812 (16) 0.0483 (11)
H6 0.3751 0.6829 0.4320 0.058*
C7 0.1582 (3) 0.7666 (5) 0.3761 (2) 0.0422 (12)
C8 0.1593 (3) 0.6614 (6) 0.33197 (19) 0.0492 (11)
H8 0.1446 0.5483 0.3364 0.059*
C9 0.1817 (3) 0.7198 (7) 0.2813 (2) 0.0553 (14)
C10 0.2049 (3) 0.8896 (7) 0.2769 (2) 0.0626 (13)
H10 0.2208 0.9325 0.2432 0.075*
C11 0.2050 (3) 0.9959 (6) 0.3212 (2) 0.0601 (13)
C12 0.1793 (3) 0.9334 (5) 0.37078 (18) 0.0504 (11)
H12 0.1763 1.0045 0.4006 0.060*
C13 0.1821 (3) 0.6099 (7) 0.2319 (2) 0.0839 (17)
H13A 0.1218 0.6037 0.2173 0.126*
H13B 0.2024 0.4989 0.2415 0.126*
H13C 0.2225 0.6568 0.2054 0.126*
C14 0.2293 (4) 1.1823 (6) 0.3147 (3) 0.103 (2)
H14A 0.2189 1.2162 0.2779 0.155*
H14B 0.2921 1.1990 0.3237 0.155*
H14C 0.1920 1.2487 0.3384 0.155*
S2 −0.03497 (7) 0.80910 (15) 0.05640 (5) 0.0475 (3)
O5 0.01620 (19) 0.6581 (3) 0.05262 (13) 0.0618 (8)
O6 −0.0860 (2) 0.8702 (4) 0.01140 (12) 0.0664 (9)
O7 0.2958 (3) 1.3138 (6) 0.1386 (2) 0.1138 (18)
O8 0.2121 (3) 1.4949 (5) 0.09994 (16) 0.0838 (11)
N3 −0.1086 (2) 0.7845 (4) 0.10462 (16) 0.0446 (10)
H3N −0.142 (2) 0.871 (3) 0.1028 (15) 0.054*
N4 0.2285 (3) 1.3523 (6) 0.11394 (18) 0.0665 (12)
C15 0.0414 (2) 0.9711 (5) 0.07551 (14) 0.0387 (10)
C16 0.1215 (3) 0.9299 (5) 0.10135 (17) 0.0530 (11)
H16 0.1338 0.8183 0.1101 0.064*
C17 0.1833 (3) 1.0543 (6) 0.1142 (2) 0.0571 (13)
H17 0.2379 1.0285 0.1313 0.069*
C18 0.1616 (3) 1.2180 (6) 0.1009 (2) 0.0440 (12)
C19 0.0830 (3) 1.2609 (5) 0.0751 (2) 0.0486 (14)
H19 0.0707 1.3723 0.0661 0.058*
C20 0.0221 (2) 1.1340 (5) 0.06260 (17) 0.0478 (11)
H20 −0.0323 1.1600 0.0453 0.057*
C21 −0.0857 (3) 0.7124 (5) 0.1559 (2) 0.0389 (11)
C22 −0.0684 (3) 0.5420 (5) 0.16021 (18) 0.0468 (11)
H22 −0.0689 0.4750 0.1294 0.056*
C23 −0.0504 (2) 0.4699 (5) 0.2103 (2) 0.0481 (11)
C24 −0.0518 (3) 0.5743 (6) 0.2550 (2) 0.0538 (12)
H24 −0.0418 0.5267 0.2889 0.065*
C25 −0.0673 (3) 0.7446 (5) 0.2521 (2) 0.0483 (14)
C26 −0.0837 (3) 0.8133 (6) 0.2017 (2) 0.0505 (11)
H26 −0.0935 0.9285 0.1984 0.061*
C27 −0.0307 (4) 0.2842 (5) 0.2156 (2) 0.0811 (17)
H27A −0.0110 0.2407 0.1814 0.122*
H27B −0.0849 0.2264 0.2268 0.122*
H27C 0.0162 0.2674 0.2421 0.122*
C28 −0.0679 (3) 0.8542 (7) 0.30165 (19) 0.0821 (16)
H28A −0.0105 0.9109 0.3048 0.123*
H28B −0.0778 0.7856 0.3331 0.123*
H28C −0.1157 0.9359 0.2987 0.123*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0542 (6) 0.0496 (8) 0.0446 (7) 0.0110 (6) 0.0033 (6) −0.0041 (7)
O1 0.074 (2) 0.0460 (19) 0.069 (2) 0.0071 (18) −0.0228 (18) −0.0130 (19)
O2 0.077 (2) 0.086 (2) 0.0502 (19) 0.0283 (19) 0.0294 (17) 0.0126 (18)
O3 0.102 (3) 0.062 (2) 0.151 (4) 0.034 (3) 0.006 (3) −0.027 (3)
O4 0.077 (3) 0.117 (3) 0.153 (5) 0.029 (3) 0.042 (3) −0.034 (3)
N1 0.037 (2) 0.046 (2) 0.060 (3) −0.0075 (18) 0.0004 (18) 0.003 (2)
N2 0.065 (3) 0.067 (3) 0.072 (3) 0.019 (3) −0.007 (2) −0.022 (3)
C1 0.042 (2) 0.036 (2) 0.036 (2) 0.003 (2) 0.0014 (18) 0.0015 (19)
C2 0.044 (2) 0.047 (3) 0.064 (3) 0.000 (2) 0.005 (2) 0.005 (2)
C3 0.054 (3) 0.034 (3) 0.078 (5) 0.002 (2) −0.008 (3) 0.000 (2)
C4 0.047 (3) 0.052 (3) 0.046 (3) 0.018 (3) 0.000 (2) −0.011 (2)
C5 0.049 (3) 0.059 (3) 0.054 (3) −0.003 (3) 0.010 (2) 0.007 (3)
C6 0.054 (3) 0.041 (3) 0.050 (3) −0.004 (2) 0.004 (2) 0.008 (2)
C7 0.033 (2) 0.044 (3) 0.050 (3) 0.006 (2) −0.001 (2) 0.002 (2)
C8 0.040 (2) 0.048 (3) 0.059 (3) −0.001 (2) −0.001 (2) −0.002 (3)
C9 0.050 (3) 0.065 (3) 0.051 (4) −0.001 (3) −0.002 (3) −0.006 (3)
C10 0.066 (3) 0.072 (4) 0.050 (3) −0.001 (3) 0.004 (2) 0.012 (3)
C11 0.066 (3) 0.051 (3) 0.063 (3) 0.000 (2) −0.005 (3) 0.013 (3)
C12 0.054 (3) 0.044 (3) 0.053 (3) 0.000 (2) −0.009 (2) −0.008 (2)
C13 0.076 (3) 0.107 (4) 0.069 (4) −0.007 (3) 0.011 (3) −0.026 (3)
C14 0.145 (5) 0.058 (3) 0.107 (5) −0.010 (4) 0.005 (4) 0.026 (4)
S2 0.0512 (6) 0.0443 (7) 0.0471 (7) −0.0100 (6) 0.0015 (6) −0.0028 (7)
O5 0.070 (2) 0.0401 (17) 0.075 (2) −0.0035 (16) 0.0198 (18) −0.0141 (18)
O6 0.073 (2) 0.078 (2) 0.0489 (19) −0.0261 (18) −0.0172 (16) 0.0081 (18)
O7 0.074 (3) 0.095 (3) 0.173 (5) −0.004 (3) −0.053 (3) −0.046 (3)
O8 0.099 (3) 0.058 (2) 0.094 (3) −0.029 (2) 0.007 (2) −0.014 (2)
N3 0.039 (2) 0.041 (2) 0.054 (3) 0.0005 (17) 0.0038 (18) 0.003 (2)
N4 0.057 (3) 0.070 (3) 0.073 (3) −0.013 (3) 0.005 (2) −0.036 (3)
C15 0.038 (2) 0.036 (2) 0.042 (2) 0.002 (2) −0.0009 (19) −0.0019 (19)
C16 0.056 (3) 0.047 (3) 0.056 (3) 0.006 (2) −0.008 (2) 0.009 (2)
C17 0.042 (3) 0.063 (3) 0.066 (3) −0.003 (3) −0.018 (2) −0.011 (3)
C18 0.036 (2) 0.043 (3) 0.053 (3) −0.004 (2) 0.005 (2) −0.019 (2)
C19 0.051 (3) 0.036 (3) 0.059 (4) 0.005 (2) 0.004 (2) −0.004 (2)
C20 0.039 (2) 0.044 (2) 0.061 (3) 0.005 (2) −0.009 (2) −0.002 (2)
C21 0.032 (2) 0.040 (3) 0.045 (3) −0.002 (2) 0.0048 (19) −0.003 (3)
C22 0.046 (2) 0.037 (3) 0.057 (3) −0.006 (2) 0.003 (2) −0.008 (2)
C23 0.052 (3) 0.031 (2) 0.062 (3) −0.005 (2) −0.001 (2) 0.003 (2)
C24 0.049 (3) 0.064 (3) 0.048 (3) −0.005 (2) −0.002 (2) 0.011 (3)
C25 0.044 (3) 0.049 (3) 0.051 (4) 0.001 (2) −0.003 (3) −0.009 (2)
C26 0.042 (2) 0.039 (3) 0.070 (4) −0.004 (2) 0.004 (2) −0.008 (3)
C27 0.108 (4) 0.051 (3) 0.084 (4) 0.006 (3) −0.017 (3) 0.007 (3)
C28 0.086 (4) 0.101 (4) 0.059 (4) 0.017 (3) −0.001 (3) −0.029 (3)

Geometric parameters (Å, º)

S1—O2 1.423 (3) S2—O5 1.419 (3)
S1—O1 1.433 (3) S2—O6 1.428 (3)
S1—N1 1.634 (4) S2—N3 1.623 (4)
S1—C1 1.769 (4) S2—C15 1.772 (4)
O3—N2 1.211 (5) O7—N4 1.203 (5)
O4—N2 1.216 (5) O8—N4 1.208 (5)
N1—C7 1.442 (6) N3—C21 1.433 (6)
N1—H1N 0.849 (18) N3—H3N 0.843 (18)
N2—C4 1.473 (6) N4—C18 1.486 (6)
C1—C6 1.371 (5) C15—C20 1.363 (5)
C1—C2 1.388 (5) C15—C16 1.379 (5)
C2—C3 1.378 (6) C16—C17 1.380 (6)
C2—H2 0.9300 C16—H16 0.9300
C3—C4 1.369 (7) C17—C18 1.378 (6)
C3—H3 0.9300 C17—H17 0.9300
C4—C5 1.354 (5) C18—C19 1.364 (6)
C5—C6 1.382 (5) C19—C20 1.383 (5)
C5—H5 0.9300 C19—H19 0.9300
C6—H6 0.9300 C20—H20 0.9300
C7—C12 1.366 (5) C21—C22 1.380 (5)
C7—C8 1.376 (6) C21—C26 1.387 (6)
C8—C9 1.376 (7) C22—C23 1.391 (5)
C8—H8 0.9300 C22—H22 0.9300
C9—C10 1.395 (6) C23—C24 1.382 (6)
C9—C13 1.502 (7) C23—C27 1.509 (5)
C10—C11 1.383 (6) C24—C25 1.373 (5)
C10—H10 0.9300 C24—H24 0.9300
C11—C12 1.376 (6) C25—C26 1.382 (7)
C11—C14 1.532 (6) C25—C28 1.504 (7)
C12—H12 0.9300 C26—H26 0.9300
C13—H13A 0.9600 C27—H27A 0.9600
C13—H13B 0.9600 C27—H27B 0.9600
C13—H13C 0.9600 C27—H27C 0.9600
C14—H14A 0.9600 C28—H28A 0.9600
C14—H14B 0.9600 C28—H28B 0.9600
C14—H14C 0.9600 C28—H28C 0.9600
O2—S1—O1 120.9 (2) O5—S2—O6 121.0 (2)
O2—S1—N1 105.49 (19) O5—S2—N3 107.50 (19)
O1—S1—N1 107.79 (19) O6—S2—N3 105.3 (2)
O2—S1—C1 107.69 (18) O5—S2—C15 107.14 (17)
O1—S1—C1 106.67 (18) O6—S2—C15 107.14 (17)
N1—S1—C1 107.78 (19) N3—S2—C15 108.30 (19)
C7—N1—S1 121.8 (3) C21—N3—S2 122.8 (3)
C7—N1—H1N 115 (3) C21—N3—H3N 121 (3)
S1—N1—H1N 110 (3) S2—N3—H3N 104 (3)
O3—N2—O4 122.6 (5) O7—N4—O8 123.2 (5)
O3—N2—C4 118.8 (5) O7—N4—C18 118.2 (5)
O4—N2—C4 118.6 (5) O8—N4—C18 118.6 (5)
C6—C1—C2 120.9 (4) C20—C15—C16 120.8 (4)
C6—C1—S1 119.9 (3) C20—C15—S2 119.6 (3)
C2—C1—S1 119.2 (3) C16—C15—S2 119.5 (3)
C3—C2—C1 119.3 (4) C15—C16—C17 119.9 (4)
C3—C2—H2 120.3 C15—C16—H16 120.0
C1—C2—H2 120.3 C17—C16—H16 120.0
C4—C3—C2 118.5 (4) C18—C17—C16 117.9 (4)
C4—C3—H3 120.8 C18—C17—H17 121.0
C2—C3—H3 120.8 C16—C17—H17 121.0
C5—C4—C3 122.9 (4) C19—C18—C17 122.9 (4)
C5—C4—N2 118.6 (4) C19—C18—N4 118.9 (4)
C3—C4—N2 118.4 (5) C17—C18—N4 118.2 (4)
C4—C5—C6 118.9 (4) C18—C19—C20 118.2 (4)
C4—C5—H5 120.5 C18—C19—H19 120.9
C6—C5—H5 120.5 C20—C19—H19 120.9
C1—C6—C5 119.4 (4) C15—C20—C19 120.2 (4)
C1—C6—H6 120.3 C15—C20—H20 119.9
C5—C6—H6 120.3 C19—C20—H20 119.9
C12—C7—C8 120.6 (5) C22—C21—C26 120.0 (5)
C12—C7—N1 119.6 (5) C22—C21—N3 120.2 (4)
C8—C7—N1 119.7 (4) C26—C21—N3 119.8 (4)
C7—C8—C9 121.4 (5) C21—C22—C23 120.5 (4)
C7—C8—H8 119.3 C21—C22—H22 119.8
C9—C8—H8 119.3 C23—C22—H22 119.8
C8—C9—C10 117.1 (5) C24—C23—C22 117.6 (4)
C8—C9—C13 123.1 (5) C24—C23—C27 121.3 (5)
C10—C9—C13 119.8 (5) C22—C23—C27 121.1 (4)
C11—C10—C9 121.9 (5) C25—C24—C23 123.4 (5)
C11—C10—H10 119.0 C25—C24—H24 118.3
C9—C10—H10 119.0 C23—C24—H24 118.3
C12—C11—C10 119.1 (4) C24—C25—C26 117.8 (5)
C12—C11—C14 120.4 (5) C24—C25—C28 121.8 (5)
C10—C11—C14 120.5 (5) C26—C25—C28 120.4 (4)
C7—C12—C11 119.9 (5) C25—C26—C21 120.8 (4)
C7—C12—H12 120.1 C25—C26—H26 119.6
C11—C12—H12 120.1 C21—C26—H26 119.6
C9—C13—H13A 109.5 C23—C27—H27A 109.5
C9—C13—H13B 109.5 C23—C27—H27B 109.5
H13A—C13—H13B 109.5 H27A—C27—H27B 109.5
C9—C13—H13C 109.5 C23—C27—H27C 109.5
H13A—C13—H13C 109.5 H27A—C27—H27C 109.5
H13B—C13—H13C 109.5 H27B—C27—H27C 109.5
C11—C14—H14A 109.5 C25—C28—H28A 109.5
C11—C14—H14B 109.5 C25—C28—H28B 109.5
H14A—C14—H14B 109.5 H28A—C28—H28B 109.5
C11—C14—H14C 109.5 C25—C28—H28C 109.5
H14A—C14—H14C 109.5 H28A—C28—H28C 109.5
H14B—C14—H14C 109.5 H28B—C28—H28C 109.5
O2—S1—N1—C7 178.5 (3) O5—S2—N3—C21 44.9 (4)
O1—S1—N1—C7 48.1 (4) O6—S2—N3—C21 175.1 (3)
C1—S1—N1—C7 −66.7 (4) C15—S2—N3—C21 −70.6 (4)
O2—S1—C1—C6 −152.5 (3) O5—S2—C15—C20 154.9 (3)
O1—S1—C1—C6 −21.4 (4) O6—S2—C15—C20 23.6 (4)
N1—S1—C1—C6 94.1 (3) N3—S2—C15—C20 −89.4 (3)
O2—S1—C1—C2 27.4 (4) O5—S2—C15—C16 −22.5 (4)
O1—S1—C1—C2 158.5 (3) O6—S2—C15—C16 −153.7 (3)
N1—S1—C1—C2 −85.9 (3) N3—S2—C15—C16 93.2 (3)
C6—C1—C2—C3 −0.9 (6) C20—C15—C16—C17 −0.3 (6)
S1—C1—C2—C3 179.2 (3) S2—C15—C16—C17 177.1 (3)
C1—C2—C3—C4 −0.7 (7) C15—C16—C17—C18 0.7 (7)
C2—C3—C4—C5 2.2 (7) C16—C17—C18—C19 −1.1 (7)
C2—C3—C4—N2 180.0 (4) C16—C17—C18—N4 −179.1 (4)
O3—N2—C4—C5 176.4 (5) O7—N4—C18—C19 177.1 (5)
O4—N2—C4—C5 −4.7 (7) O8—N4—C18—C19 −1.9 (6)
O3—N2—C4—C3 −1.5 (7) O7—N4—C18—C17 −4.9 (7)
O4—N2—C4—C3 177.4 (5) O8—N4—C18—C17 176.2 (5)
C3—C4—C5—C6 −2.0 (7) C17—C18—C19—C20 1.1 (7)
N2—C4—C5—C6 −179.8 (4) N4—C18—C19—C20 179.1 (4)
C2—C1—C6—C5 1.1 (6) C16—C15—C20—C19 0.3 (6)
S1—C1—C6—C5 −179.0 (3) S2—C15—C20—C19 −177.1 (3)
C4—C5—C6—C1 0.3 (6) C18—C19—C20—C15 −0.7 (6)
S1—N1—C7—C12 −71.1 (5) S2—N3—C21—C22 −72.3 (5)
S1—N1—C7—C8 112.5 (4) S2—N3—C21—C26 109.8 (4)
C12—C7—C8—C9 0.2 (6) C26—C21—C22—C23 1.0 (6)
N1—C7—C8—C9 176.6 (4) N3—C21—C22—C23 −176.9 (3)
C7—C8—C9—C10 1.2 (6) C21—C22—C23—C24 0.9 (5)
C7—C8—C9—C13 −178.9 (4) C21—C22—C23—C27 −179.5 (4)
C8—C9—C10—C11 −0.4 (7) C22—C23—C24—C25 −2.0 (6)
C13—C9—C10—C11 179.6 (4) C27—C23—C24—C25 178.4 (4)
C9—C10—C11—C12 −1.6 (7) C23—C24—C25—C26 1.1 (7)
C9—C10—C11—C14 −179.0 (5) C23—C24—C25—C28 −179.7 (4)
C8—C7—C12—C11 −2.3 (6) C24—C25—C26—C21 0.9 (6)
N1—C7—C12—C11 −178.7 (3) C28—C25—C26—C21 −178.3 (4)
C10—C11—C12—C7 3.0 (6) C22—C21—C26—C25 −1.9 (6)
C14—C11—C12—C7 −179.7 (4) N3—C21—C26—C25 176.0 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O3i 0.85 (2) 2.35 (2) 3.129 (5) 152 (3)
N3—H3N···O8ii 0.84 (2) 2.40 (2) 3.168 (5) 152 (3)

Symmetry codes: (i) x−1/2, −y+1/2, z; (ii) x−1/2, −y+5/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6865).

References

  1. Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077. [DOI] [PubMed]
  2. Chaithanya, U., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o2823. [DOI] [PMC free article] [PubMed]
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Gowda, B. T. & Weiss, A. (1994). Z. Naturforsch. Teil A, 49, 695–702.
  5. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  6. Shahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. & Raza, M. A. (2012). Acta Cryst. E68, o1160. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Shetty, M. & Gowda, B. T. (2004). Z. Naturforsch. Teil B, 59, 63–72.
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812047502/bt6865sup1.cif

e-68-o3425-sup1.cif (32.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812047502/bt6865Isup2.hkl

e-68-o3425-Isup2.hkl (182.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812047502/bt6865Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES