Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 24;68(Pt 12):o3426. doi: 10.1107/S1600536812047630

N-(2,5-Dimethyl­phen­yl)-2-nitro­benzene­sulfonamide

U Chaithanya a, Sabine Foro b, B Thimme Gowda a,*
PMCID: PMC3589009  PMID: 23476245

Abstract

In the crystal structure of the title compound, C14H14N2O4S, the N—H bond is syn to the ortho-nitro group in the sulfonyl benzene ring and anti to the ortho- and syn to the meta-methyl groups in the aniline ring. The mol­ecule is twisted at the S—N bond with a torsion angle of 71.41 (18)°. The dihedral angle between the planes of the benzene rings is 51.07 (8)°. In the crystal, pairs of N—H⋯Osulfonamide hydrogen bonds link the mol­ecules into inversion dimers.

Related literature  

For studies on the effects of substituents on the structures and other aspects of N-aryl­sulfonamides, see: Chaithanya et al. (2012); Gowda et al. (2002) and of N-chloro­aryl­sulfonamides, see: Gowda & Shetty (2004); Shetty & Gowda (2004).graphic file with name e-68-o3426-scheme1.jpg

Experimental  

Crystal data  

  • C14H14N2O4S

  • M r = 306.33

  • Triclinic, Inline graphic

  • a = 8.1987 (7) Å

  • b = 9.6729 (9) Å

  • c = 9.9328 (9) Å

  • α = 84.386 (9)°

  • β = 72.096 (8)°

  • γ = 89.239 (9)°

  • V = 745.86 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.36 × 0.24 × 0.16 mm

Data collection  

  • Oxford Diffraction Xcaliburdiffractometer with Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.921, T max = 0.964

  • 4954 measured reflections

  • 3027 independent reflections

  • 2629 reflections with I > 2σ(I)

  • R int = 0.011

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.108

  • S = 1.14

  • 3027 reflections

  • 193 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812047630/rz5026sup1.cif

e-68-o3426-sup1.cif (21.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812047630/rz5026Isup2.hkl

e-68-o3426-Isup2.hkl (148.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812047630/rz5026Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.82 (2) 2.27 (2) 3.023 (2) 152 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under the UGC–BSR one-time grant to faculty.

supplementary crystallographic information

Comment

As a part of studying the effect of substituents on the structures and other aspects of N-arylsulfonamides (Chaithanya et al., 2012; Gowda et al., 2002) and N-chloroarylsulfonamides (Gowda & Shetty, 2004; Shetty & Gowda, 2004), in the present work, the crystal structure of N-(2,5-dimethylphenyl)-2-nitrobenzene- sulfonamide (I) has been determined (Fig. 1). The conformation of the N—H bond is syn to the ortho-nitro group in the sulfonyl benzene ring and anti to the ortho-methyl and syn to the meta-methyl groups in the anilino ring, compared to the anti conformation observed between the N—H bond and both the ortho- and meta-methyl groups in the anilino ring observed in N-(2,3-dimethylphenyl)-2-nitrobenzene- sulfonamide (II) (Chaithanya et al., 2012).

The molecules in (I) are twisted at the S—N bond with the torsional angle of 71.41 (18)°, compared to the values of -60.37 (30) and 58.81 (34)° in the two independent molecules of (II).

The dihedral angle between the sulfonyl and the anilino rings is 51.07 (8)°, compared to the values of 53.67 (8) and 56.99 (9)° in the two molecules of (II).

The amide H-atom showed the intermolecular H-bonding with the sulfonyl oxygen atom of the other molecule, generating inversion dimers (Table 1, Fig. 2.)

In the crystal structure, N1—H1N···O2(S) intermolecular hydrogen bonds link the molecules into inversion dimers (Table 1, Fig. 2.)

Experimental

The title compound was prepared by treating 2-nitrobenzenesulfonyl- chloride with 2,5-dimethylaniline in the stoichiometric ratio and boiling the reaction mixture for 15 minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid N-(2,5-dimethylphenyl)-2-nitrobenzenesulfon- amide was filtered under suction and washed thoroughly with cold water and dilute HCl to remove the excess sulfonylchloride and aniline, respectively. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by its infrared spectra.

Prism like light brown single crystals of the title compound used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation of the solvent at room temperature.

Refinement

H atoms bonded to C were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å, methyl C—H = 0.96 Å. The amino H atoms were freely refined with the N—H distance restrained to 0.86 (2) Å. All H atoms were refined with isotropic displacement parameters set at 1.2 Ueq(C-aromatic, N) and 1.5 Ueq (C-methyl) of the parent atom.

The (0 1 1) reflection is probably affected by the beamstop and was omitted from the refinement.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom labelling scheme and with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C14H14N2O4S Z = 2
Mr = 306.33 F(000) = 320
Triclinic, P1 Dx = 1.364 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.1987 (7) Å Cell parameters from 3120 reflections
b = 9.6729 (9) Å θ = 2.6–27.8°
c = 9.9328 (9) Å µ = 0.23 mm1
α = 84.386 (9)° T = 293 K
β = 72.096 (8)° Prism, light brown
γ = 89.239 (9)° 0.36 × 0.24 × 0.16 mm
V = 745.86 (12) Å3

Data collection

Oxford Diffraction Xcaliburdiffractometer with Sapphire CCD 3027 independent reflections
Radiation source: fine-focus sealed tube 2629 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.011
Rotation method data acquisition using ω scans θmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −10→10
Tmin = 0.921, Tmax = 0.964 k = −12→11
4954 measured reflections l = −12→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108 H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0379P)2 + 0.3685P] where P = (Fo2 + 2Fc2)/3
3027 reflections (Δ/σ)max < 0.001
193 parameters Δρmax = 0.28 e Å3
1 restraint Δρmin = −0.29 e Å3

Special details

Experimental. Absorption correction: CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3540 (2) 0.0929 (2) 0.6857 (2) 0.0387 (4)
C2 0.4684 (2) 0.0253 (2) 0.7467 (2) 0.0433 (4)
C3 0.6437 (3) 0.0467 (3) 0.6890 (3) 0.0561 (6)
H3 0.7187 −0.0016 0.7294 0.067*
C4 0.7051 (3) 0.1400 (3) 0.5713 (3) 0.0657 (7)
H4 0.8226 0.1564 0.5326 0.079*
C5 0.5947 (3) 0.2092 (3) 0.5104 (3) 0.0657 (7)
H5 0.6376 0.2732 0.4313 0.079*
C6 0.4199 (3) 0.1846 (2) 0.5655 (2) 0.0525 (5)
H6 0.3462 0.2299 0.5216 0.063*
C7 0.0552 (3) 0.3225 (2) 0.8314 (2) 0.0448 (5)
C8 0.1732 (3) 0.4106 (2) 0.8577 (2) 0.0567 (6)
C9 0.1583 (4) 0.5520 (3) 0.8214 (3) 0.0760 (8)
H9 0.2318 0.6147 0.8398 0.091*
C10 0.0386 (4) 0.6010 (3) 0.7595 (3) 0.0772 (9)
H10 0.0348 0.6961 0.7352 0.093*
C11 −0.0768 (4) 0.5141 (3) 0.7317 (3) 0.0701 (7)
C12 −0.0680 (3) 0.3728 (2) 0.7717 (2) 0.0546 (5)
H12 −0.1464 0.3114 0.7580 0.065*
C13 0.3075 (4) 0.3582 (3) 0.9231 (3) 0.0808 (9)
H13A 0.3794 0.2942 0.8642 0.121*
H13B 0.2531 0.3118 1.0159 0.121*
H13C 0.3759 0.4350 0.9310 0.121*
C14 −0.2091 (5) 0.5675 (4) 0.6626 (4) 0.1074 (12)
H14A −0.1524 0.6151 0.5709 0.161*
H14B −0.2833 0.6304 0.7213 0.161*
H14C −0.2756 0.4907 0.6518 0.161*
N1 0.0568 (2) 0.17583 (17) 0.86856 (18) 0.0440 (4)
H1N 0.054 (3) 0.147 (2) 0.9500 (18) 0.053*
N2 0.4089 (3) −0.0701 (2) 0.8773 (2) 0.0605 (5)
O1 0.06849 (18) 0.11008 (16) 0.63232 (16) 0.0524 (4)
O2 0.09053 (18) −0.06778 (14) 0.82168 (17) 0.0530 (4)
O3 0.3174 (2) −0.0226 (2) 0.98338 (19) 0.0766 (6)
O4 0.4595 (3) −0.1884 (2) 0.8720 (3) 0.1039 (8)
S1 0.12780 (6) 0.06923 (5) 0.75061 (5) 0.04028 (15)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0295 (9) 0.0461 (10) 0.0427 (10) 0.0008 (7) −0.0130 (8) −0.0090 (8)
C2 0.0392 (10) 0.0489 (11) 0.0462 (11) 0.0018 (8) −0.0184 (8) −0.0087 (9)
C3 0.0352 (10) 0.0803 (16) 0.0610 (14) 0.0081 (10) −0.0235 (10) −0.0184 (12)
C4 0.0340 (11) 0.107 (2) 0.0540 (13) −0.0084 (12) −0.0080 (10) −0.0155 (13)
C5 0.0470 (12) 0.0948 (19) 0.0483 (13) −0.0161 (12) −0.0074 (10) 0.0054 (12)
C6 0.0427 (11) 0.0664 (14) 0.0482 (12) −0.0028 (10) −0.0159 (9) 0.0026 (10)
C7 0.0419 (10) 0.0408 (10) 0.0425 (10) −0.0039 (8) 0.0003 (8) −0.0034 (8)
C8 0.0508 (12) 0.0569 (13) 0.0516 (12) −0.0120 (10) 0.0032 (10) −0.0149 (10)
C9 0.0778 (18) 0.0586 (16) 0.0737 (18) −0.0236 (14) 0.0073 (15) −0.0178 (13)
C10 0.099 (2) 0.0401 (13) 0.0682 (17) −0.0027 (14) 0.0094 (16) −0.0016 (12)
C11 0.0859 (19) 0.0550 (15) 0.0579 (14) 0.0203 (13) −0.0073 (13) −0.0015 (11)
C12 0.0560 (13) 0.0474 (12) 0.0562 (13) 0.0057 (10) −0.0110 (10) −0.0070 (10)
C13 0.0585 (15) 0.101 (2) 0.090 (2) −0.0091 (14) −0.0240 (14) −0.0389 (17)
C14 0.136 (3) 0.085 (2) 0.100 (3) 0.050 (2) −0.041 (2) 0.0008 (19)
N1 0.0415 (9) 0.0426 (9) 0.0433 (9) −0.0010 (7) −0.0078 (7) 0.0007 (7)
N2 0.0507 (11) 0.0670 (13) 0.0716 (14) −0.0038 (9) −0.0350 (11) 0.0086 (10)
O1 0.0400 (7) 0.0664 (10) 0.0586 (9) 0.0051 (7) −0.0254 (7) −0.0112 (7)
O2 0.0451 (8) 0.0412 (8) 0.0708 (10) −0.0064 (6) −0.0158 (7) −0.0025 (7)
O3 0.0671 (11) 0.1086 (16) 0.0516 (10) −0.0154 (10) −0.0196 (9) 0.0114 (10)
O4 0.1010 (17) 0.0670 (13) 0.147 (2) 0.0127 (12) −0.0545 (16) 0.0241 (13)
S1 0.0304 (2) 0.0421 (3) 0.0500 (3) −0.00165 (17) −0.01472 (19) −0.0047 (2)

Geometric parameters (Å, º)

C1—C6 1.383 (3) C9—H9 0.9300
C1—C2 1.389 (3) C10—C11 1.380 (4)
C1—S1 1.7764 (18) C10—H10 0.9300
C2—C3 1.384 (3) C11—C12 1.392 (3)
C2—N2 1.470 (3) C11—C14 1.512 (4)
C3—C4 1.371 (4) C12—H12 0.9300
C3—H3 0.9300 C13—H13A 0.9600
C4—C5 1.369 (4) C13—H13B 0.9600
C4—H4 0.9300 C13—H13C 0.9600
C5—C6 1.383 (3) C14—H14A 0.9600
C5—H5 0.9300 C14—H14B 0.9600
C6—H6 0.9300 C14—H14C 0.9600
C7—C12 1.382 (3) N1—S1 1.6049 (18)
C7—C8 1.397 (3) N1—H1N 0.823 (16)
C7—N1 1.431 (3) N2—O4 1.213 (3)
C8—C9 1.393 (4) N2—O3 1.218 (3)
C8—C13 1.500 (4) O1—S1 1.4242 (15)
C9—C10 1.367 (5) O2—S1 1.4295 (15)
C6—C1—C2 118.12 (18) C10—C11—C12 116.9 (3)
C6—C1—S1 117.31 (15) C10—C11—C14 122.5 (3)
C2—C1—S1 124.57 (15) C12—C11—C14 120.6 (3)
C3—C2—C1 121.6 (2) C7—C12—C11 121.1 (2)
C3—C2—N2 116.78 (18) C7—C12—H12 119.4
C1—C2—N2 121.63 (18) C11—C12—H12 119.4
C4—C3—C2 119.0 (2) C8—C13—H13A 109.5
C4—C3—H3 120.5 C8—C13—H13B 109.5
C2—C3—H3 120.5 H13A—C13—H13B 109.5
C5—C4—C3 120.4 (2) C8—C13—H13C 109.5
C5—C4—H4 119.8 H13A—C13—H13C 109.5
C3—C4—H4 119.8 H13B—C13—H13C 109.5
C4—C5—C6 120.5 (2) C11—C14—H14A 109.5
C4—C5—H5 119.7 C11—C14—H14B 109.5
C6—C5—H5 119.7 H14A—C14—H14B 109.5
C5—C6—C1 120.3 (2) C11—C14—H14C 109.5
C5—C6—H6 119.9 H14A—C14—H14C 109.5
C1—C6—H6 119.9 H14B—C14—H14C 109.5
C12—C7—C8 121.8 (2) C7—N1—S1 121.88 (14)
C12—C7—N1 117.78 (19) C7—N1—H1N 119.0 (17)
C8—C7—N1 120.4 (2) S1—N1—H1N 115.8 (17)
C9—C8—C7 116.1 (2) O4—N2—O3 125.3 (2)
C9—C8—C13 121.2 (2) O4—N2—C2 117.4 (2)
C7—C8—C13 122.6 (2) O3—N2—C2 117.3 (2)
C10—C9—C8 121.9 (3) O1—S1—O2 119.85 (9)
C10—C9—H9 119.1 O1—S1—N1 108.74 (9)
C8—C9—H9 119.1 O2—S1—N1 107.05 (9)
C9—C10—C11 122.1 (2) O1—S1—C1 105.37 (9)
C9—C10—H10 118.9 O2—S1—C1 108.28 (9)
C11—C10—H10 118.9 N1—S1—C1 106.93 (9)
C6—C1—C2—C3 −0.9 (3) C8—C7—C12—C11 1.7 (3)
S1—C1—C2—C3 178.74 (16) N1—C7—C12—C11 −179.5 (2)
C6—C1—C2—N2 177.9 (2) C10—C11—C12—C7 −2.4 (4)
S1—C1—C2—N2 −2.5 (3) C14—C11—C12—C7 178.3 (2)
C1—C2—C3—C4 2.1 (3) C12—C7—N1—S1 75.0 (2)
N2—C2—C3—C4 −176.8 (2) C8—C7—N1—S1 −106.1 (2)
C2—C3—C4—C5 −1.2 (4) C3—C2—N2—O4 −59.0 (3)
C3—C4—C5—C6 −0.8 (4) C1—C2—N2—O4 122.2 (2)
C4—C5—C6—C1 2.0 (4) C3—C2—N2—O3 118.6 (2)
C2—C1—C6—C5 −1.2 (3) C1—C2—N2—O3 −60.2 (3)
S1—C1—C6—C5 179.19 (19) C7—N1—S1—O1 −41.91 (18)
C12—C7—C8—C9 0.5 (3) C7—N1—S1—O2 −172.73 (15)
N1—C7—C8—C9 −178.28 (19) C7—N1—S1—C1 71.41 (18)
C12—C7—C8—C13 179.7 (2) C6—C1—S1—O1 22.19 (19)
N1—C7—C8—C13 0.9 (3) C2—C1—S1—O1 −157.44 (17)
C7—C8—C9—C10 −2.0 (4) C6—C1—S1—O2 151.56 (17)
C13—C8—C9—C10 178.8 (2) C2—C1—S1—O2 −28.1 (2)
C8—C9—C10—C11 1.3 (4) C6—C1—S1—N1 −93.39 (18)
C9—C10—C11—C12 0.9 (4) C2—C1—S1—N1 86.97 (18)
C9—C10—C11—C14 −179.7 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2i 0.82 (2) 2.27 (2) 3.023 (2) 152 (2)

Symmetry code: (i) −x, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5026).

References

  1. Chaithanya, U., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o3188. [DOI] [PMC free article] [PubMed]
  2. Gowda, B. T., Jyothi, K. & D’Souza, J. D. (2002). Z. Naturforsch. Teil A, 57, 967–973.
  3. Gowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848–864.
  4. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Shetty, M. & Gowda, B. T. (2004). Z. Naturforsch. Teil B, 59, 63–72.
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812047630/rz5026sup1.cif

e-68-o3426-sup1.cif (21.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812047630/rz5026Isup2.hkl

e-68-o3426-Isup2.hkl (148.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812047630/rz5026Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES