Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 24;68(Pt 12):o3427–o3428. doi: 10.1107/S1600536812047575

1,3-Dibenzyl-2-(2-chloro­phen­yl)-4-methyl­imidazolidine

Augusto Rivera a,*, Lorena Cardenas a, Jaime Ríos-Motta a, Václav Eigner b,c, Michal Dušek c
PMCID: PMC3589010  PMID: 23476246

Abstract

In the title compound, C24H25ClN2, the methine, methyl­ene and methyl C atoms of the methyl-substituted imidazolidine ring are disordered over two sets of sites with a refined occupancy ratio of 0.834 (4):0.166 (4). Each disordered ring assumes an envelope conformation with an N atom as the flap. The pendant benzyl rings are oriented equatorially with respect to the imidazolidine ring. The chloro­phenyl ring is inclined to the mean plane of the four planar atoms of the major component of the imidazolidine ring by 76.27 (12)°. The dihedral angles between the chloro­phenyl ring and the two benzyl rings are 55.31 (9) and 57.50 (8)°; the dihedral angle between these latter rings is 71.59 (9)°. In the crystal, mol­ecules are linked by C—H⋯Cl inter­actions and a number of weak C—H⋯π inter­actions, involving all three aromatic rings, forming a three-dimensional structure.

Related literature  

For uses of imidazolidine-bridged bis­(phenol) derivatives in coordination chemistry, see: Xu et al. (2007). For related structures, see: Yang et al. (2009); Xia et al. (2007). For standard bond lengths, see: Allen et al. (1987). For ring conformations, see: Cremer & Pople (1975).graphic file with name e-68-o3427-scheme1.jpg

Experimental  

Crystal data  

  • C24H25ClN2

  • M r = 376.9

  • Monoclinic, Inline graphic

  • a = 7.1858 (1) Å

  • b = 9.8577 (2) Å

  • c = 29.3310 (5) Å

  • β = 96.8591 (15)°

  • V = 2062.80 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.70 mm−1

  • T = 120 K

  • 0.44 × 0.32 × 0.21 mm

Data collection  

  • Agilent Xcalibur (Atlas, Gemini ultra) diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Agilent, 2010) T min = 0.62, T max = 0.751

  • 39415 measured reflections

  • 3665 independent reflections

  • 3464 reflections with I > 3σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.144

  • S = 2.91

  • 3665 reflections

  • 260 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812047575/su2527sup1.cif

e-68-o3427-sup1.cif (21.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812047575/su2527Isup2.hkl

e-68-o3427-Isup2.hkl (151.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812047575/su2527Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C12–C17 and C18–C23 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H1C9⋯Cl24 0.96 2.58 3.1596 (16) 119
C21—H1c21⋯Cg2i 0.96 2.87 3.6324 (19) 137
C11—H2c11⋯Cg2ii 0.96 2.82 3.6192 (19) 142
C4—H1c4⋯Cg3iii 0.96 2.79 3.695 (2) 157
C26—H1c26⋯Cg1iii 0.96 2.91 3.688 (2) 139

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work, as well as the Institutional research plan (No. AVOZ10100521) of the Institute of Physics. VE and MD acknowledge the suport provided by the project Praemium Academiae of the Academy of Sciences (ASCR), Czech Republic.

supplementary crystallographic information

Comment

As part of our studies on the synthesis of new imidazolidine derivatives we have prepared the title compound. It is an imidazolidine-bridged bis(phenol) which can serve as a useful precursor for the synthesis of lanthanide complexes of great potential application in homogeneous catalysis (Xu et al., 2007), and herein we report on its crystal structure.

In the title compound, Fig. 1, the methyl substituted imidazolidine ring exhibits molecular disorder over two orientations, with a refined occupancy ratio of 0.834 (4):0.166 (4) for atoms (C25,C26,C27):(C25',C26',C27'). The bond lengths (Allen et al., 1987) and angles are close to normal. In the imidazolidine ring, the bond lengths and angles are similar to those reported for closely related structures (Yang et al., 2009; Xia et al., 2007).

Each disordered component of the imidazolidine ring [N8/C9/N10/C25(25')/C26(26')] adopts an envelope conformation on N10 (major component) and N8 (minor component), respectively, with puckering parameters of Q2 = 0.427 (2) Å and φ2 = 252.5 (3)° for the major component, and Q2 = 0.555 (6) Å and φ2 = 178.7 (8)° for the minor component [Cremer & Pople, 1975].

The chlorophenyl ring attached to C9 (C18—C23) is inclined to the mean plane of the four planar atoms of the major component of the imidazolidine ring by 76.27 (12) °. The dihedral angles between the chlorophenyl ring (C18–C23) and the two benzyl rings (C1-C6) and (C12-C17) are 55.31 (9) and 57.50 (8)°, respectively. The pendant phenyl rings of the benzyl groups are oriented equatorially to the imidazolidine ring. The dihedral angle between these rings is 71.59 (9)°.

In the crystal, molecules are linked by C-H···Cl interactions and a number of weak C—H···π interactions, involving all three aromatic rings (Table 1), forming a three-dimensional structure.

Experimental

A toluene solution of N1,N2-dibenzylpropane-1,2-diamine was refluxed for 8 h with 4-chlorobenzaldehyde in a molar ratio of 1.1:1.0. The mixture was evaporated on a rotary evaporator. The residue was cooled, and the precipitate was filtered off. It was then washed with cold ethanol, dried in air, and recrystallized from ethanol [Yield 81%; M.p. 352-353 K].

Refinement

H atoms present in the structural model were discernible in difference Fourier maps and could be refined to reasonable geometry. According to common practice H atoms bonded to C were kept in ideal positions with C–H = 0.96 Å and Uiso(H) = 1.2Ueq(C,N). The methine, methylene and methyl groups of the methyl substituted imidazolidine ring were found to be disordered with a refined occupancy ratio of 0.834 (4):0.166 (4). The disordered part of the molecule was refined with bond distances of both fractions kept at the same values. The H atoms of the minor fraction could also be found in difference Fourier maps as faint maxima, however, their addition had negligible impact on R values and GOF. Moreover, it was found that the refined geometry of the minor fraction C atoms is not sufficiently correct for derivation of proper H atom positions, as indicated by too close positions between H2C25' and H2C7 (1.81Å). However, these H atoms were retained in the final refined structural model.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of the title compound, showing the atom numbering. Displacement ellipsoids are drawn at the 50% probability level. Only the major component of the disordered methyl substitued imidazolidine ring is shown.

Crystal data

C24H25ClN2 Z = 4
Mr = 376.9 F(000) = 800
Monoclinic, P21/c Dx = 1.213 Mg m3
Hall symbol: -P 2ycb Cu Kα radiation, λ = 1.5418 Å
a = 7.1858 (1) Å Cell parameters from 20478 reflections
b = 9.8577 (2) Å θ = 3.0–67.0°
c = 29.3310 (5) Å µ = 1.70 mm1
β = 96.8591 (15)° T = 120 K
V = 2062.80 (6) Å3 0.44 × 0.32 × 0.21 mm

Data collection

Agilent Xcalibur (Atlas, Gemini ultra) diffractometer 3665 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source 3464 reflections with I > 3σ(I)
Mirror monochromator Rint = 0.029
Detector resolution: 10.3784 pixels mm-1 θmax = 67.1°, θmin = 3.0°
ω scans h = −8→8
Absorption correction: analytical (CrysAlis PRO; Agilent, 2010) k = −11→11
Tmin = 0.62, Tmax = 0.751 l = −34→34
39415 measured reflections

Refinement

Refinement on F2 153 constraints
R[F2 > 2σ(F2)] = 0.043 H-atom parameters constrained
wR(F2) = 0.144 Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2)
S = 2.91 (Δ/σ)max = 0.047
3665 reflections Δρmax = 0.24 e Å3
260 parameters Δρmin = −0.35 e Å3
4 restraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl24 −0.02857 (6) −0.36115 (5) 0.065592 (15) 0.04745 (17)
N8 0.1847 (2) −0.10600 (13) 0.17251 (5) 0.0361 (4)
N10 0.3151 (2) −0.02081 (12) 0.11112 (5) 0.0344 (4)
C16 0.7452 (3) 0.2032 (2) 0.05130 (6) 0.0477 (6)
C20 0.5614 (3) −0.41315 (17) 0.13435 (6) 0.0424 (6)
C2 0.1697 (3) −0.20165 (19) 0.31553 (7) 0.0497 (6)
C19 0.4692 (2) −0.29057 (17) 0.13876 (6) 0.0391 (5)
C15 0.6776 (3) 0.30121 (19) 0.01963 (6) 0.0452 (6)
C17 0.6261 (3) 0.10445 (18) 0.06521 (6) 0.0448 (6)
C21 0.4719 (3) −0.51645 (17) 0.10812 (6) 0.0427 (6)
C1 0.1636 (3) −0.21435 (18) 0.26802 (6) 0.0432 (6)
C3 0.0314 (3) −0.13050 (19) 0.33373 (7) 0.0553 (7)
C23 0.2014 (2) −0.37547 (16) 0.09207 (6) 0.0349 (5)
C22 0.2929 (3) −0.49840 (16) 0.08697 (6) 0.0399 (5)
C18 0.2879 (2) −0.26912 (15) 0.11737 (5) 0.0324 (5)
C11 0.3064 (3) −0.00554 (16) 0.06139 (6) 0.0390 (5)
C6 0.0205 (3) −0.15668 (17) 0.23914 (6) 0.0406 (6)
C12 0.4379 (3) 0.10288 (16) 0.04778 (5) 0.0362 (5)
C9 0.1973 (2) −0.13226 (15) 0.12385 (6) 0.0340 (5)
C14 0.4925 (3) 0.29944 (18) 0.00181 (6) 0.0446 (6)
C13 0.3724 (3) 0.20095 (16) 0.01582 (6) 0.0398 (5)
C7 0.0183 (2) −0.1681 (2) 0.18783 (6) 0.0434 (6)
C25 0.2377 (4) 0.0968 (2) 0.13284 (8) 0.0382 (6) 0.834 (4)
C26' 0.2578 (14) 0.0937 (8) 0.1408 (4) 0.0382 (6) 0.166 (4)
C4 −0.1125 (3) −0.0734 (2) 0.30561 (8) 0.0593 (8)
C5 −0.1196 (3) −0.0859 (2) 0.25804 (7) 0.0510 (7)
C27 0.3731 (3) 0.0772 (2) 0.21620 (8) 0.0475 (7) 0.834 (4)
C26 0.2097 (3) 0.04486 (18) 0.18044 (7) 0.0349 (7) 0.834 (4)
C27' 0.4362 (15) 0.1242 (11) 0.1719 (4) 0.047 (4) 0.166 (4)
C25' 0.1081 (17) 0.0315 (6) 0.1670 (4) 0.0349 (7) 0.166 (4)
H1c16 0.875012 0.203631 0.063679 0.0573*
H1c20 0.686283 −0.426164 0.149381 0.0509*
H1c2 0.269944 −0.242418 0.335449 0.0596*
H1c19 0.531872 −0.21934 0.156898 0.047*
H1c15 0.760026 0.369776 0.01026 0.0543*
H1c17 0.674392 0.036817 0.087035 0.0538*
H1c21 0.535525 −0.600857 0.104771 0.0513*
H1c1 0.260406 −0.263872 0.255352 0.0518*
H1c3 0.036117 −0.120936 0.366424 0.0664*
H1c22 0.231051 −0.569829 0.068775 0.0479*
H1c11 0.180416 0.015881 0.048777 0.0468*
H2c11 0.336042 −0.090551 0.04801 0.0468*
H1c9 0.077614 −0.135976 0.105426 0.0408*
H1c14 0.445321 0.366312 −0.020417 0.0535*
H1c13 0.242801 0.200852 0.003238 0.0478*
H1c7 0.01236 −0.26198 0.179091 0.0521*
H2c7 −0.092009 −0.124555 0.172859 0.0521*
H1c4 −0.209051 −0.024474 0.318574 0.0711*
H1c5 −0.221036 −0.045807 0.238336 0.0612*
H1c25 0.328399 0.168788 0.135627 0.0458* 0.834 (4)
H2c25 0.118473 0.120137 0.116385 0.0458* 0.834 (4)
H1c27 0.487331 0.046259 0.205703 0.057* 0.834 (4)
H2c27 0.379789 0.173462 0.221124 0.057* 0.834 (4)
H3c27 0.356064 0.032474 0.244474 0.057* 0.834 (4)
H1c26 0.105513 0.086723 0.192608 0.0419* 0.834 (4)
H1c26' 0.209453 0.174743 0.125584 0.0458* 0.166 (4)
H1c25' 0.111895 0.073924 0.196512 0.0419* 0.166 (4)
H2c25' −0.009138 0.028882 0.147483 0.0419* 0.166 (4)
H1c27' 0.497636 0.040672 0.181514 0.0568* 0.166 (4)
H2c27' 0.517824 0.178023 0.155616 0.0568* 0.166 (4)
H3c27' 0.406452 0.173148 0.198402 0.0568* 0.166 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl24 0.0489 (3) 0.0456 (3) 0.0467 (3) 0.00039 (17) 0.0010 (2) −0.00135 (17)
N8 0.0483 (8) 0.0258 (7) 0.0366 (7) 0.0073 (5) 0.0153 (6) 0.0017 (5)
N10 0.0490 (8) 0.0239 (6) 0.0314 (7) 0.0070 (5) 0.0101 (6) 0.0025 (5)
C16 0.0496 (10) 0.0535 (11) 0.0411 (10) 0.0026 (8) 0.0098 (8) −0.0068 (8)
C20 0.0465 (10) 0.0350 (9) 0.0471 (10) 0.0140 (7) 0.0113 (8) 0.0070 (7)
C2 0.0659 (12) 0.0420 (10) 0.0414 (10) −0.0193 (9) 0.0072 (9) 0.0011 (8)
C19 0.0453 (9) 0.0294 (8) 0.0434 (9) 0.0075 (7) 0.0082 (8) 0.0015 (7)
C15 0.0613 (11) 0.0405 (9) 0.0372 (9) −0.0035 (8) 0.0201 (8) −0.0063 (7)
C17 0.0572 (11) 0.0400 (9) 0.0379 (9) 0.0119 (8) 0.0081 (8) 0.0038 (7)
C21 0.0600 (11) 0.0303 (8) 0.0416 (9) 0.0145 (7) 0.0213 (9) 0.0054 (7)
C1 0.0512 (10) 0.0357 (9) 0.0437 (10) −0.0076 (7) 0.0101 (8) −0.0007 (7)
C3 0.0879 (16) 0.0390 (10) 0.0423 (11) −0.0265 (10) 0.0210 (11) −0.0051 (8)
C23 0.0434 (9) 0.0314 (8) 0.0315 (8) 0.0037 (6) 0.0114 (7) 0.0047 (6)
C22 0.0612 (11) 0.0268 (8) 0.0346 (9) 0.0023 (7) 0.0178 (8) 0.0006 (6)
C18 0.0436 (9) 0.0244 (7) 0.0310 (7) 0.0061 (6) 0.0119 (7) 0.0032 (6)
C11 0.0563 (10) 0.0289 (8) 0.0328 (8) 0.0049 (7) 0.0090 (8) 0.0008 (6)
C6 0.0492 (10) 0.0338 (9) 0.0416 (10) −0.0023 (7) 0.0175 (8) 0.0007 (7)
C12 0.0541 (10) 0.0270 (8) 0.0290 (8) 0.0070 (7) 0.0111 (7) −0.0011 (6)
C9 0.0408 (9) 0.0265 (8) 0.0351 (9) 0.0083 (6) 0.0069 (7) 0.0022 (6)
C14 0.0663 (12) 0.0326 (9) 0.0368 (9) 0.0053 (8) 0.0142 (8) 0.0040 (7)
C13 0.0532 (10) 0.0331 (8) 0.0342 (8) 0.0067 (7) 0.0093 (8) 0.0025 (7)
C7 0.0403 (9) 0.0503 (10) 0.0409 (10) 0.0051 (7) 0.0099 (8) 0.0029 (8)
C25 0.0524 (11) 0.0271 (8) 0.0357 (11) 0.0063 (7) 0.0082 (9) −0.0031 (8)
C26' 0.0524 (11) 0.0271 (8) 0.0357 (11) 0.0063 (7) 0.0082 (9) −0.0031 (8)
C4 0.0835 (15) 0.0404 (10) 0.0624 (13) −0.0097 (10) 0.0439 (12) −0.0095 (9)
C5 0.0574 (12) 0.0454 (10) 0.0544 (11) 0.0045 (8) 0.0241 (10) 0.0034 (9)
C27 0.0632 (14) 0.0351 (11) 0.0427 (12) −0.0055 (10) 0.0004 (10) 0.0021 (9)
C26 0.0446 (14) 0.0231 (8) 0.0384 (11) 0.0061 (8) 0.0109 (10) −0.0018 (7)
C27' 0.044 (6) 0.042 (6) 0.056 (7) −0.006 (4) 0.007 (5) −0.018 (5)
C25' 0.0446 (14) 0.0231 (8) 0.0384 (11) 0.0061 (8) 0.0109 (10) −0.0018 (7)

Geometric parameters (Å, º)

N8—C9 1.464 (2) C18—C9 1.520 (2)
N8—C7 1.461 (2) C11—C12 1.511 (2)
N8—C26 1.513 (2) C11—H1c11 0.96
N8—C25' 1.464 (7) C11—H2c11 0.96
N10—C11 1.460 (2) C6—C7 1.507 (3)
N10—C9 1.462 (2) C6—C5 1.393 (3)
N10—C25 1.464 (3) C12—C13 1.389 (2)
N10—C26' 1.512 (10) C9—H1c9 0.96
C16—C15 1.387 (3) C14—C13 1.393 (3)
C16—C17 1.389 (3) C14—H1c14 0.96
C16—H1c16 0.96 C13—H1c13 0.96
C20—C19 1.391 (2) C7—H1c7 0.96
C20—C21 1.387 (2) C7—H2c7 0.96
C20—H1c20 0.96 C25—C26 1.523 (3)
C2—C1 1.395 (3) C25—H1c25 0.96
C2—C3 1.375 (3) C25—H2c25 0.96
C2—H1c2 0.96 C26'—C27' 1.512 (14)
C19—C18 1.393 (2) C26'—C25' 1.523 (16)
C19—H1c19 0.96 C26'—H1c26' 0.96
C15—C14 1.370 (3) C4—C5 1.395 (3)
C15—H1c15 0.96 C4—H1c4 0.96
C17—C12 1.388 (3) C5—H1c5 0.96
C17—H1c17 0.96 C27—C26 1.512 (3)
C21—C22 1.371 (3) C27—H1c27 0.96
C21—H1c21 0.96 C27—H2c27 0.96
C1—C6 1.375 (2) C27—H3c27 0.96
C1—H1c1 0.96 C26—H1c26 0.96
C3—C4 1.365 (3) C27'—H1c27' 0.96
C3—H1c3 0.96 C27'—H2c27' 0.96
C23—C22 1.395 (2) C27'—H3c27' 0.96
C23—C18 1.388 (2) C25'—H1c25' 0.96
C22—H1c22 0.96 C25'—H2c25' 0.96
C9—N8—C7 111.94 (13) N8—C9—H1c9 113.6
C9—N8—C26 107.69 (13) N10—C9—C18 111.41 (14)
C9—N8—C25' 97.0 (5) N10—C9—H1c9 113.07
C7—N8—C26 116.80 (15) C18—C9—H1c9 105.31
C7—N8—C25' 96.4 (5) C15—C14—C13 120.25 (16)
C11—N10—C9 112.07 (12) C15—C14—H1c14 119.88
C11—N10—C25 112.33 (14) C13—C14—H1c14 119.88
C11—N10—C26' 121.1 (4) C12—C13—C14 120.82 (17)
C9—N10—C25 102.85 (15) C12—C13—H1c13 119.59
C9—N10—C26' 102.0 (4) C14—C13—H1c13 119.59
C15—C16—C17 120.43 (18) N8—C7—C6 111.35 (14)
C15—C16—H1c16 119.79 N8—C7—H1c7 109.47
C17—C16—H1c16 119.78 N8—C7—H2c7 109.47
C19—C20—C21 119.66 (16) C6—C7—H1c7 109.47
C19—C20—H1c20 120.17 C6—C7—H2c7 109.47
C21—C20—H1c20 120.17 H1c7—C7—H2c7 107.53
C1—C2—C3 119.75 (18) N10—C25—C26 103.37 (16)
C1—C2—H1c2 120.13 N10—C25—H1c25 109.47
C3—C2—H1c2 120.13 N10—C25—H2c25 109.47
C20—C19—C18 121.33 (15) C26—C25—H1c25 109.47
C20—C19—H1c19 119.33 C26—C25—H2c25 109.47
C18—C19—H1c19 119.33 H1c25—C25—H2c25 114.95
C16—C15—C14 119.51 (18) N10—C26'—C27' 103.1 (7)
C16—C15—H1c15 120.24 N10—C26'—C25' 104.3 (6)
C14—C15—H1c15 120.25 N10—C26'—H1c26' 117.48
C16—C17—C12 120.46 (16) C27'—C26'—C25' 112.0 (9)
C16—C17—H1c17 119.77 C27'—C26'—H1c26' 110.43
C12—C17—H1c17 119.77 C25'—C26'—H1c26' 109.35
C20—C21—C22 120.22 (16) C3—C4—C5 120.1 (2)
C20—C21—H1c21 119.89 C3—C4—H1c4 119.92
C22—C21—H1c21 119.89 C5—C4—H1c4 119.93
C2—C1—C6 120.67 (18) C6—C5—C4 120.03 (19)
C2—C1—H1c1 119.66 C6—C5—H1c5 119.98
C6—C1—H1c1 119.66 C4—C5—H1c5 119.98
C2—C3—C4 120.4 (2) C26—C27—H1c27 109.47
C2—C3—H1c3 119.8 C26—C27—H2c27 109.47
C4—C3—H1c3 119.8 C26—C27—H3c27 109.47
C22—C23—C18 121.77 (15) H1c27—C27—H2c27 109.47
C21—C22—C23 119.53 (15) H1c27—C27—H3c27 109.47
C21—C22—H1c22 120.23 H2c27—C27—H3c27 109.47
C23—C22—H1c22 120.24 N8—C26—C25 102.47 (15)
C19—C18—C23 117.47 (14) N8—C26—C27 112.46 (16)
C19—C18—C9 118.05 (13) N8—C26—H1c26 113.36
C23—C18—C9 124.48 (14) C25—C26—C27 112.82 (19)
N10—C11—C12 112.54 (13) C25—C26—H1c26 113
N10—C11—H1c11 109.47 C27—C26—H1c26 103.12
N10—C11—H2c11 109.47 C26'—C27'—H1c27' 109.47
C12—C11—H1c11 109.47 C26'—C27'—H2c27' 109.47
C12—C11—H2c11 109.47 C26'—C27'—H3c27' 109.47
H1c11—C11—H2c11 106.21 H1c27'—C27'—H2c27' 109.47
C1—C6—C7 120.16 (17) H1c27'—C27'—H3c27' 109.47
C1—C6—C5 119.00 (18) H2c27'—C27'—H3c27' 109.47
C7—C6—C5 120.83 (16) N8—C25'—C26' 98.6 (8)
C17—C12—C11 121.54 (15) N8—C25'—H1c25' 109.47
C17—C12—C13 118.53 (16) N8—C25'—H2c25' 109.47
C11—C12—C13 119.89 (15) C26'—C25'—H1c25' 109.47
N8—C9—N10 102.77 (12) C26'—C25'—H2c25' 109.47
N8—C9—C18 110.86 (12) H1c25'—C25'—H2c25' 118.51

Hydrogen-bond geometry (Å, º)

Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C12–C17 and C18–C23 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C9—H1C9···Cl24 0.96 2.58 3.1596 (16) 119
C21—H1c21···Cg2i 0.96 2.87 3.6324 (19) 137
C11—H2c11···Cg2ii 0.96 2.82 3.6192 (19) 142
C4—H1c4···Cg3iii 0.96 2.79 3.695 (2) 157
C26—H1c26···Cg1iii 0.96 2.91 3.688 (2) 139

Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y, −z; (iii) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2527).

References

  1. Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact, Bonn, Germany.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
  6. Petříček, V., Dusěk, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.
  7. Xia, H.-T., Liu, Y.-F., Wang, D.-Q. & Li, B. (2007). Acta Cryst. E63, o3666.
  8. Xu, X., Yao, Y., Zhang, Y. & Shen, Q. (2007). Inorg. Chem. 46, 3743–3751. [DOI] [PubMed]
  9. Yang, S.-P., Han, L.-J., Wen, A.-P. & Wang, D.-Q. (2009). Acta Cryst. E65, o3049. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812047575/su2527sup1.cif

e-68-o3427-sup1.cif (21.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812047575/su2527Isup2.hkl

e-68-o3427-Isup2.hkl (151.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812047575/su2527Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES