Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 24;68(Pt 12):o3430. doi: 10.1107/S1600536812046806

4-(3-Chloro-2,2-dimethyl­propanamido)­benzene­sulfonamide

Şerife Pınar Yalçın a,b, Mehmet Akkurt c,*, Mustafa Durgun d, Baki Türkkan d, Hasan Türkmen d
PMCID: PMC3589012  PMID: 23476248

Abstract

In the title compound, C11H15ClN2O3S, the 3-chloro-2,2-dimethyl­propanamide and sulfonamide substituents are arranged on opposite sides of the benzene ring plane. In the crystal, mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature  

For the anti­bacterial, anti­microbial and anti­glaucoma activity of sulfonamides and their derivatives and for their physical properties and pharmacological applications, see: Poulsen et al. (2005); Supuran & Scozzafava (2000). For related structures, see: Akkurt et al. (2010); Idemudia et al. (2012); Asiri et al. (2012). For the synthesis, see: Türkmen et al. (2011).graphic file with name e-68-o3430-scheme1.jpg

Experimental  

Crystal data  

  • C11H15ClN2O3S

  • M r = 290.77

  • Monoclinic, Inline graphic

  • a = 20.4359 (11) Å

  • b = 7.2437 (4) Å

  • c = 9.4693 (5) Å

  • β = 98.222 (3)°

  • V = 1387.35 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 294 K

  • 0.31 × 0.14 × 0.13 mm

Data collection  

  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: refined from ΔF (XABS2; Parkin et al., 1995) T min = 0.931, T max = 0.946

  • 4240 measured reflections

  • 4240 independent reflections

  • 2054 reflections with I > 2σ(I)

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.084

  • wR(F 2) = 0.231

  • S = 1.02

  • 4240 reflections

  • 175 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812046806/sj5282sup1.cif

e-68-o3430-sup1.cif (21.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812046806/sj5282Isup2.hkl

e-68-o3430-Isup2.hkl (207.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812046806/sj5282Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.88 (3) 2.57 (5) 3.035 (4) 114 (4)
N1—H1N⋯O1ii 0.88 (3) 2.21 (4) 3.043 (5) 160 (5)
N1—H2N⋯O1iii 0.88 (2) 2.10 (4) 2.921 (4) 155 (5)
N2—H3N⋯O3iv 0.91 (6) 2.16 (6) 3.063 (5) 173 (5)
C11—H11B⋯O3iv 0.97 2.44 3.391 (5) 166

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors thank the Unit of Scientific Research Projects of Harran University, Turkey for a research grant (HUBAK project Nos. 874 and 1136).

supplementary crystallographic information

Comment

Sulfonamides are of interest because of their unique biological properties. They are known inhibitors of the carbonic anhydrase enzyme, currently used for the treatment of glaucoma in clinical medicine (Poulsen et al., 2005; Supuran & Scozzafava, 2000). The design and development of new sulfanilamide derivatives can help determine any structural requirements for improved biological activity. In this study, we have prepared and determined the crystal structure of 4-(3-Chloro-2,2-dimethylpropanoylamino)-benzenesulfonamide (I).

In Fig. 1, the molecular structure of the title compound is not planar. In the 3-chloro-2,2-dimethylpropanamide moiety of (I), the N2—C7—C8—C9, N2—C7—C8—C10 and N2—C7—C8—C11 torsion angles are 178.6 (4), 57.2 (5) and -59.4 (5) °, respectively. The values of the bond lengths and bond angles in (I) are within the normal range and are comparable to those previously reported for the related structures (Akkurt et al., 2010; Idemudia et al., 2012; Asiri et al., 2012). The crystal structure is stabilized by intermolecular N—H···O and C—H···O hydrogen bonds (Table 1 and Fig. 2).

Experimental

Nucleophilic acyl substitution of 3-chloro-2,2-dimethyl-propanoylchloride with sulfanilamide gave the title compound as described previously (Türkmen et al., 2011). Crystals suitable for X-ray diffraction studies were grown by slow evaporation of an ethanol, chloroform, dichloromethane (4/3/3 v/v) solution of the product.

Refinement

The H atoms on the NH and NH2 groups were located from a difference Fourier map and refined with distance restraints of N—H = 0.88 (1) Å for the NH2, with Uiso(H) = 1.2Ueq(N). The remaining H atoms were positioned geometrically, with C—H = 0.93–0.97 Å, and refined as riding with Uiso(H) = 1.2 or 1.5 Ueq(C). The high R factor, low ratio of observed to unique reflections and relatively high su values indicate that the crystals were of rather poor quality and did not diffract strongly.

Figures

Fig. 1.

Fig. 1.

The title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Packing of the title compound viewed along the b axis with N—H···O and C—H···O hydrogen bonds drawn as dashed lines. H atoms not involved in hydrogen bonding are omitted for clarity.

Crystal data

C11H15ClN2O3S F(000) = 608
Mr = 290.77 Dx = 1.392 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5710 reflections
a = 20.4359 (11) Å θ = 2.5–30.5°
b = 7.2437 (4) Å µ = 0.43 mm1
c = 9.4693 (5) Å T = 294 K
β = 98.222 (3)° Needle, white
V = 1387.35 (13) Å3 0.31 × 0.14 × 0.13 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID-S diffractometer 4240 independent reflections
Radiation source: Sealed Tube 2054 reflections with I > 2σ(I)
Graphite Monochromator monochromator Rint = 0.000
Detector resolution: 10.0000 pixels mm-1 θmax = 30.6°, θmin = 3.0°
ω scans h = −29→28
Absorption correction: part of the refinement model (ΔF) (XABS2; Parkin et al., 1995) k = 0→10
Tmin = 0.931, Tmax = 0.946 l = 0→13
4240 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.231 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0751P)2 + 1.0033P] where P = (Fo2 + 2Fc2)/3
4240 reflections (Δ/σ)max < 0.001
175 parameters Δρmax = 0.36 e Å3
2 restraints Δρmin = −0.33 e Å3

Special details

Experimental. Absorption correction: (XABS2; Parkin et al., 1995) Cubic fit to sin(theta)/lambda - 24 parameters
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.05415 (8) 0.1450 (2) 0.13028 (15) 0.1040 (6)
S1 0.43958 (5) −0.22940 (14) 0.07872 (10) 0.0540 (3)
O1 0.45415 (14) −0.1736 (4) −0.0593 (3) 0.0634 (10)
O2 0.42131 (15) −0.4163 (4) 0.1004 (3) 0.0684 (11)
O3 0.19397 (15) 0.3907 (4) 0.0227 (3) 0.0689 (10)
N1 0.50493 (18) −0.1856 (5) 0.1885 (3) 0.0592 (11)
N2 0.22555 (18) 0.2516 (5) 0.2354 (4) 0.0640 (13)
C1 0.37522 (19) −0.0863 (6) 0.1199 (4) 0.0550 (14)
C2 0.3682 (2) 0.0917 (6) 0.0669 (4) 0.0603 (14)
C3 0.3193 (2) 0.2057 (6) 0.1041 (4) 0.0628 (17)
C4 0.2770 (2) 0.1406 (6) 0.1935 (4) 0.0579 (14)
C5 0.2852 (2) −0.0344 (7) 0.2500 (4) 0.0691 (17)
C6 0.3339 (2) −0.1493 (7) 0.2132 (4) 0.0675 (16)
C7 0.1859 (2) 0.3629 (6) 0.1465 (4) 0.0563 (14)
C8 0.1294 (2) 0.4544 (6) 0.2119 (4) 0.0643 (16)
C9 0.0901 (3) 0.5785 (8) 0.1019 (6) 0.102 (3)
C10 0.1581 (3) 0.5664 (8) 0.3447 (6) 0.102 (3)
C11 0.0849 (2) 0.3082 (7) 0.2637 (5) 0.0727 (18)
H1N 0.519 (3) −0.074 (3) 0.174 (6) 0.1230*
H2 0.39660 0.13480 0.00580 0.0720*
H2N 0.500 (3) −0.209 (8) 0.277 (2) 0.1230*
H3 0.31500 0.32570 0.06900 0.0750*
H3N 0.213 (3) 0.216 (8) 0.320 (6) 0.1230*
H5 0.25770 −0.07550 0.31350 0.0830*
H6 0.33890 −0.26790 0.25080 0.0810*
H9A 0.11770 0.67740 0.07780 0.1520*
H9B 0.05290 0.62860 0.14050 0.1520*
H9C 0.07470 0.50810 0.01780 0.1520*
H10A 0.18810 0.65780 0.31830 0.1530*
H10B 0.18120 0.48500 0.41480 0.1530*
H10C 0.12270 0.62620 0.38370 0.1530*
H11A 0.04780 0.36890 0.29760 0.0870*
H11B 0.10950 0.24310 0.34380 0.0870*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1001 (11) 0.1304 (13) 0.0862 (9) −0.0399 (9) 0.0299 (8) −0.0167 (8)
S1 0.0632 (6) 0.0599 (6) 0.0404 (5) −0.0007 (5) 0.0126 (4) 0.0005 (4)
O1 0.079 (2) 0.0732 (19) 0.0411 (14) 0.0032 (15) 0.0195 (13) −0.0002 (12)
O2 0.083 (2) 0.0627 (18) 0.0608 (17) −0.0105 (15) 0.0144 (15) −0.0004 (14)
O3 0.0708 (19) 0.090 (2) 0.0481 (15) 0.0074 (16) 0.0166 (13) 0.0051 (14)
N1 0.063 (2) 0.068 (2) 0.0475 (18) −0.0015 (17) 0.0115 (16) 0.0033 (16)
N2 0.063 (2) 0.084 (3) 0.0473 (18) 0.0104 (19) 0.0163 (16) 0.0035 (18)
C1 0.058 (2) 0.066 (3) 0.0420 (19) −0.0019 (19) 0.0104 (16) 0.0019 (17)
C2 0.061 (2) 0.070 (3) 0.053 (2) −0.001 (2) 0.0190 (19) 0.008 (2)
C3 0.063 (3) 0.065 (3) 0.064 (3) 0.003 (2) 0.021 (2) 0.008 (2)
C4 0.056 (2) 0.075 (3) 0.044 (2) 0.001 (2) 0.0119 (17) 0.0023 (19)
C5 0.067 (3) 0.086 (3) 0.059 (3) 0.003 (2) 0.025 (2) 0.015 (2)
C6 0.067 (3) 0.079 (3) 0.059 (2) 0.008 (2) 0.018 (2) 0.017 (2)
C7 0.058 (2) 0.069 (3) 0.044 (2) −0.003 (2) 0.0143 (17) 0.0006 (18)
C8 0.074 (3) 0.070 (3) 0.053 (2) 0.008 (2) 0.023 (2) 0.002 (2)
C9 0.113 (5) 0.104 (4) 0.098 (4) 0.042 (4) 0.048 (3) 0.032 (3)
C10 0.125 (5) 0.090 (4) 0.097 (4) −0.007 (3) 0.035 (4) −0.030 (3)
C11 0.073 (3) 0.095 (4) 0.054 (2) 0.008 (3) 0.023 (2) 0.002 (2)

Geometric parameters (Å, º)

Cl1—C11 1.778 (5) C7—C8 1.536 (6)
S1—O1 1.439 (3) C8—C9 1.516 (7)
S1—O2 1.427 (3) C8—C10 1.540 (7)
S1—N1 1.602 (4) C8—C11 1.522 (6)
S1—C1 1.762 (4) C2—H2 0.9300
O3—C7 1.224 (5) C3—H3 0.9300
N2—C4 1.424 (6) C5—H5 0.9300
N2—C7 1.349 (5) C6—H6 0.9300
N1—H1N 0.88 (3) C9—H9A 0.9600
N1—H2N 0.88 (2) C9—H9B 0.9600
N2—H3N 0.91 (6) C9—H9C 0.9600
C1—C2 1.384 (6) C10—H10A 0.9600
C1—C6 1.384 (6) C10—H10B 0.9600
C2—C3 1.380 (6) C10—H10C 0.9600
C3—C4 1.377 (6) C11—H11A 0.9700
C4—C5 1.377 (6) C11—H11B 0.9700
C5—C6 1.380 (6)
O1—S1—O2 119.30 (17) C9—C8—C10 110.6 (4)
O1—S1—N1 105.79 (17) C9—C8—C11 110.6 (4)
O1—S1—C1 107.08 (18) Cl1—C11—C8 113.6 (3)
O2—S1—N1 107.79 (18) C1—C2—H2 120.00
O2—S1—C1 107.90 (19) C3—C2—H2 120.00
N1—S1—C1 108.62 (19) C2—C3—H3 120.00
C4—N2—C7 124.4 (4) C4—C3—H3 120.00
H1N—N1—H2N 115 (5) C4—C5—H5 120.00
S1—N1—H1N 110 (4) C6—C5—H5 120.00
S1—N1—H2N 113 (4) C1—C6—H6 120.00
C4—N2—H3N 113 (4) C5—C6—H6 120.00
C7—N2—H3N 120 (4) C8—C9—H9A 110.00
S1—C1—C2 120.7 (3) C8—C9—H9B 109.00
C2—C1—C6 119.9 (4) C8—C9—H9C 109.00
S1—C1—C6 119.4 (3) H9A—C9—H9B 109.00
C1—C2—C3 120.4 (4) H9A—C9—H9C 109.00
C2—C3—C4 119.6 (4) H9B—C9—H9C 109.00
N2—C4—C3 122.1 (4) C8—C10—H10A 109.00
N2—C4—C5 117.7 (4) C8—C10—H10B 109.00
C3—C4—C5 120.1 (4) C8—C10—H10C 109.00
C4—C5—C6 120.6 (4) H10A—C10—H10B 110.00
C1—C6—C5 119.4 (4) H10A—C10—H10C 109.00
O3—C7—C8 121.8 (4) H10B—C10—H10C 110.00
N2—C7—C8 115.2 (3) Cl1—C11—H11A 109.00
O3—C7—N2 123.0 (4) Cl1—C11—H11B 109.00
C10—C8—C11 106.2 (4) C8—C11—H11A 109.00
C7—C8—C11 110.4 (4) C8—C11—H11B 109.00
C7—C8—C9 109.5 (4) H11A—C11—H11B 108.00
C7—C8—C10 109.6 (4)
O1—S1—C1—C2 −29.3 (4) C2—C3—C4—N2 −179.9 (4)
O1—S1—C1—C6 154.6 (3) C2—C3—C4—C5 2.7 (6)
O2—S1—C1—C2 −158.9 (3) N2—C4—C5—C6 179.7 (4)
O2—S1—C1—C6 25.0 (4) C3—C4—C5—C6 −2.8 (6)
N1—S1—C1—C2 84.5 (4) C4—C5—C6—C1 0.8 (6)
N1—S1—C1—C6 −91.6 (4) O3—C7—C8—C9 −1.1 (6)
C7—N2—C4—C3 42.6 (6) O3—C7—C8—C10 −122.6 (4)
C7—N2—C4—C5 −139.9 (4) O3—C7—C8—C11 120.8 (4)
C4—N2—C7—O3 −6.2 (7) N2—C7—C8—C9 178.6 (4)
C4—N2—C7—C8 174.1 (4) N2—C7—C8—C10 57.2 (5)
S1—C1—C2—C3 −177.4 (3) N2—C7—C8—C11 −59.4 (5)
C6—C1—C2—C3 −1.4 (6) C7—C8—C11—Cl1 −54.2 (4)
S1—C1—C6—C5 177.4 (3) C9—C8—C11—Cl1 67.1 (4)
C2—C1—C6—C5 1.3 (6) C10—C8—C11—Cl1 −172.9 (3)
C1—C2—C3—C4 −0.6 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2i 0.88 (3) 2.57 (5) 3.035 (4) 114 (4)
N1—H1N···O1ii 0.88 (3) 2.21 (4) 3.043 (5) 160 (5)
N1—H2N···O1iii 0.88 (2) 2.10 (4) 2.921 (4) 155 (5)
N2—H3N···O3iv 0.91 (6) 2.16 (6) 3.063 (5) 173 (5)
C3—H3···O3 0.93 2.49 2.896 (5) 106
C6—H6···O2 0.93 2.59 2.936 (5) 103
C11—H11B···O3iv 0.97 2.44 3.391 (5) 166

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, −y, −z; (iii) x, −y−1/2, z+1/2; (iv) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5282).

References

  1. Akkurt, M., Yalçın, Ş. P., Türkmen, H. & Büyükgüngör, O. (2010). Acta Cryst. E66, o1559–o1560. [DOI] [PMC free article] [PubMed]
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  3. Asiri, A. M., Faidallah, H. M., Alamry, K. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2258–o2259. [DOI] [PMC free article] [PubMed]
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Idemudia, O. G., Sadimenko, A. P., Afolayan, A. J. & Hosten, E. C. (2012). Acta Cryst. E68, o1599. [DOI] [PMC free article] [PubMed]
  6. Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56.
  7. Poulsen, S., Bornaghi, L. F. & Healy, P. C. (2005). Bioorg. Med. Chem. Lett. 15, 5429–5433. [DOI] [PubMed]
  8. Rigaku/MSC (2005). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Supuran, C. T. & Scozzafava, A. (2000). Exp. Opin. Ther. Pat. 10, 575–600.
  12. Türkmen, H., Zengin, G. & Buyukkircali, B. (2011). Bioorg. Chem. 39 114–119. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812046806/sj5282sup1.cif

e-68-o3430-sup1.cif (21.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812046806/sj5282Isup2.hkl

e-68-o3430-Isup2.hkl (207.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812046806/sj5282Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES