Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 24;68(Pt 12):o3436. doi: 10.1107/S1600536812047381

2-(2-Nitro­phen­yl)acetohydrazide

A S Praveen a, Jerry P Jasinski b,*, Amanda C Keeley b, H S Yathirajan a, B Narayana c
PMCID: PMC3589017  PMID: 23476253

Abstract

In the title compound, C8H9N3O3, the dihedral angle between the benzene ring and the acetohydrazide C—C(=O)—N—N plane [maximum deviation = 0.0471 (13) Å] is 87.62 (8)°. The nitro group is twisted by 19.3 (2)° with respect to the benzene ring. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into a double-column structure along the b axis.

Related literature  

For the chemistry of hydrazides, ses: Domiano et al. (1984). For the biological properties of hydrazides, see: Kalsi et al. (2006); Masunari & Tavares (2007); Singh et al. (1992). For related structures, see: Ahmad et al. (2012); Dutkiewicz et al. (2009); Liu & Gao (2012). For bond-length data, see: Allen et al. (1987).graphic file with name e-68-o3436-scheme1.jpg

Experimental  

Crystal data  

  • C8H9N3O3

  • M r = 195.18

  • Monoclinic, Inline graphic

  • a = 6.6962 (5) Å

  • b = 4.9388 (4) Å

  • c = 13.3593 (12) Å

  • β = 92.361 (8)°

  • V = 441.43 (6) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.98 mm−1

  • T = 173 K

  • 0.36 × 0.28 × 0.08 mm

Data collection  

  • Oxford Diffraction Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) T min = 0.667, T max = 0.925

  • 3829 measured reflections

  • 1967 independent reflections

  • 1824 reflections with I > 2σ(I)

  • R int = 0.025

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.096

  • S = 1.05

  • 1967 reflections

  • 136 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983), 836 Friedel pairs

  • Flack parameter: 0.3 (3)

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812047381/is5219sup1.cif

e-68-o3436-sup1.cif (18.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812047381/is5219Isup2.hkl

e-68-o3436-Isup2.hkl (96.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812047381/is5219Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O1i 0.90 (1) 2.21 (2) 3.0752 (19) 163 (2)
N2—H2⋯O1ii 0.85 (2) 2.03 (2) 2.8531 (18) 165 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

ASP thanks UOM for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

Comment

The chemistry of hydrazides has been intensely investigated in recent years due to their excellent coordinating capability (Domiano et al., 1984). Hydrazides and their condensation products have displayed diverse range of biological properties such as anti-helmintic (Kalsi et al., 2006), anti-leprotic (Masunari & Tavares, 2007) and anti-depressant (Singh et al., 1992). The crystal structures of some hydrazides, viz., 2-(4-bromophenyl)acetohydrazide (Ahmad et al., 2012), 2-(4-chlorophenoxy)acetohydrazide (Dutkiewicz et al., 2009) and 2-(4-methoxyphenoxy)acetohydrazide (Liu & Gao, 2012) have been reported. In view of the importance of hydrazides, the crystal structure of title compound (I) is reported.

In the title compound, the dihedral angle between the benzene ring and acetohydrazide C2/C1/O1/N2/N1 plane is 87.62 (8)° (Fig. 1). The nitro group is twisted by 19.3 (2)° with the benzene ring. Bond lengths are in normal ranges (Allen et al., 1987). In the crystal, N—H···O hydrogen bonds (Table 1) link the molecules into a double-column structure along the b axis (Fig. 2).

Experimental

To a solution of methyl 2-(2-nitrophenyl)acetate (2 g, 10.14 mmol) in methanol (20 mL), hydrazine hydrate (2 mL) was added and the reaction mixture was stirred at room temperature for 8 hours (Fig. 3). After the completion of the reaction, methanol was removed under vacuum, water was added, precipitated solid was filtered and dried. The single crystal was grown from mixture methanol: water (2:1) by slow evaporation method and yield of the compound was 95%. (m.p.: 422-424 K).

Refinement

Atoms H1A, H1B and H2 were refined with a bond-length restraint N—H = 0.86 (2) Å. All remaining H atoms were placed in their calculated positions and then refined using the riding model with C—H lengths of 0.93 Å (CH) and 0.97 Å (CH2). Isotropic displacement parameters were set to 1.2 times Ueq of the parent atom. The Flack parameter 0.3 (3) and the Hooft y parameter of 0.45 (18) imply that the crystal used was an inversion twin.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Packing diagram of the title compound viewed along the b axis. Dashed lines indicate N—H···O hydrogen bonds. H atoms not involved in the hydrogen bonds have been removed for clarity.

Fig. 3.

Fig. 3.

Synthesis of the title compound.

Crystal data

C8H9N3O3 F(000) = 204
Mr = 195.18 Dx = 1.468 Mg m3
Monoclinic, P21 Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2yb Cell parameters from 1694 reflections
a = 6.6962 (5) Å θ = 3.3–32.5°
b = 4.9388 (4) Å µ = 0.98 mm1
c = 13.3593 (12) Å T = 173 K
β = 92.361 (8)° Chunk, colorless
V = 441.43 (6) Å3 0.36 × 0.28 × 0.08 mm
Z = 2

Data collection

Oxford Diffraction Xcalibur (Eos, Gemini) diffractometer 1967 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1824 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.025
Detector resolution: 16.0416 pixels mm-1 θmax = 89.1°, θmin = 7.3°
ω scans h = −8→8
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) k = −6→6
Tmin = 0.667, Tmax = 0.925 l = −17→17
3829 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.016P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
1967 reflections Δρmax = 0.19 e Å3
136 parameters Δρmin = −0.17 e Å3
4 restraints Absolute structure: Flack (1983), 836 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.3 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.27090 (17) 0.8745 (2) 0.55928 (9) 0.0360 (3)
O2 0.0246 (2) 0.4300 (4) 0.71073 (10) 0.0632 (5)
O3 −0.0790 (2) 0.4790 (4) 0.85895 (11) 0.0576 (4)
N1 0.1751 (2) 0.4904 (3) 0.41437 (10) 0.0360 (3)
H1A 0.202 (3) 0.660 (4) 0.4013 (15) 0.043*
H1B 0.042 (2) 0.494 (5) 0.4186 (13) 0.043*
N2 0.2580 (2) 0.4374 (3) 0.51138 (10) 0.0318 (3)
H2 0.286 (3) 0.275 (4) 0.5269 (13) 0.038*
N3 0.0398 (2) 0.5265 (3) 0.79401 (10) 0.0358 (4)
C1 0.3052 (2) 0.6316 (3) 0.57676 (12) 0.0274 (3)
C2 0.4158 (2) 0.5384 (4) 0.67189 (12) 0.0338 (4)
H2A 0.3753 0.3547 0.6868 0.041*
H2B 0.5580 0.5363 0.6609 0.041*
C3 0.3777 (2) 0.7162 (3) 0.76100 (11) 0.0290 (3)
C4 0.2066 (2) 0.7141 (3) 0.81839 (11) 0.0293 (3)
C5 0.1834 (2) 0.8801 (4) 0.90089 (12) 0.0358 (4)
H5 0.0682 0.8696 0.9372 0.043*
C6 0.3327 (3) 1.0607 (4) 0.92857 (13) 0.0391 (4)
H6 0.3182 1.1750 0.9831 0.047*
C7 0.5050 (3) 1.0703 (4) 0.87408 (13) 0.0392 (4)
H7 0.6064 1.1916 0.8922 0.047*
C8 0.5260 (2) 0.9000 (4) 0.79295 (12) 0.0338 (4)
H8 0.6435 0.9080 0.7583 0.041*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0441 (6) 0.0188 (6) 0.0449 (7) 0.0021 (5) −0.0010 (5) 0.0046 (5)
O2 0.0697 (9) 0.0736 (12) 0.0466 (8) −0.0375 (9) 0.0085 (6) −0.0133 (8)
O3 0.0440 (7) 0.0653 (11) 0.0651 (9) −0.0193 (7) 0.0216 (6) −0.0069 (8)
N1 0.0431 (7) 0.0306 (8) 0.0346 (7) −0.0004 (7) 0.0062 (6) 0.0013 (6)
N2 0.0423 (7) 0.0197 (7) 0.0337 (7) 0.0046 (6) 0.0070 (5) 0.0036 (6)
N3 0.0339 (7) 0.0332 (9) 0.0405 (8) −0.0061 (6) 0.0037 (6) 0.0013 (6)
C1 0.0296 (7) 0.0197 (8) 0.0336 (8) 0.0031 (6) 0.0087 (6) 0.0028 (6)
C2 0.0387 (8) 0.0261 (9) 0.0369 (9) 0.0096 (7) 0.0048 (6) 0.0034 (7)
C3 0.0314 (7) 0.0254 (8) 0.0303 (7) 0.0034 (6) 0.0006 (6) 0.0079 (7)
C4 0.0288 (7) 0.0242 (8) 0.0347 (8) −0.0011 (6) 0.0007 (6) 0.0043 (7)
C5 0.0385 (8) 0.0353 (10) 0.0338 (8) −0.0005 (8) 0.0048 (6) 0.0011 (7)
C6 0.0509 (10) 0.0333 (10) 0.0330 (9) −0.0026 (8) −0.0003 (7) −0.0012 (7)
C7 0.0432 (9) 0.0332 (10) 0.0404 (9) −0.0089 (8) −0.0076 (7) 0.0077 (8)
C8 0.0300 (7) 0.0351 (10) 0.0362 (8) −0.0023 (7) 0.0003 (6) 0.0095 (7)

Geometric parameters (Å, º)

O1—C1 1.242 (2) C2—H2B 0.9700
O2—N3 1.2107 (19) C3—C8 1.399 (2)
O3—N3 1.2236 (18) C3—C4 1.405 (2)
N1—N2 1.413 (2) C4—C5 1.387 (2)
N1—H1A 0.877 (16) C5—C6 1.379 (3)
N1—H1B 0.898 (14) C5—H5 0.9300
N2—C1 1.327 (2) C6—C7 1.390 (3)
N2—H2 0.845 (16) C6—H6 0.9300
N3—C4 1.477 (2) C7—C8 1.384 (3)
C1—C2 1.516 (2) C7—H7 0.9300
C2—C3 1.509 (2) C8—H8 0.9300
C2—H2A 0.9700
N2—N1—H1A 106.5 (14) C8—C3—C4 115.04 (15)
N2—N1—H1B 107.5 (12) C8—C3—C2 118.50 (14)
H1A—N1—H1B 102 (2) C4—C3—C2 126.45 (15)
C1—N2—N1 122.93 (15) C5—C4—C3 123.33 (15)
C1—N2—H2 118.6 (13) C5—C4—N3 115.94 (13)
N1—N2—H2 118.3 (13) C3—C4—N3 120.72 (14)
O2—N3—O3 122.93 (16) C6—C5—C4 119.47 (15)
O2—N3—C4 118.92 (13) C6—C5—H5 120.3
O3—N3—C4 118.13 (14) C4—C5—H5 120.3
O1—C1—N2 122.50 (16) C5—C6—C7 119.32 (16)
O1—C1—C2 122.07 (16) C5—C6—H6 120.3
N2—C1—C2 115.32 (15) C7—C6—H6 120.3
C3—C2—C1 113.10 (14) C8—C7—C6 120.18 (17)
C3—C2—H2A 109.0 C8—C7—H7 119.9
C1—C2—H2A 109.0 C6—C7—H7 119.9
C3—C2—H2B 109.0 C7—C8—C3 122.65 (15)
C1—C2—H2B 109.0 C7—C8—H8 118.7
H2A—C2—H2B 107.8 C3—C8—H8 118.7
N1—N2—C1—O1 3.6 (2) O3—N3—C4—C5 −18.1 (2)
N1—N2—C1—C2 −172.72 (13) O2—N3—C4—C3 −20.3 (2)
O1—C1—C2—C3 32.4 (2) O3—N3—C4—C3 160.87 (17)
N2—C1—C2—C3 −151.21 (14) C3—C4—C5—C6 1.0 (2)
C1—C2—C3—C8 −103.44 (17) N3—C4—C5—C6 179.95 (15)
C1—C2—C3—C4 77.9 (2) C4—C5—C6—C7 −0.9 (3)
C8—C3—C4—C5 0.0 (2) C5—C6—C7—C8 0.0 (3)
C2—C3—C4—C5 178.63 (16) C6—C7—C8—C3 1.0 (3)
C8—C3—C4—N3 −178.96 (14) C4—C3—C8—C7 −1.0 (2)
C2—C3—C4—N3 −0.3 (2) C2—C3—C8—C7 −179.73 (16)
O2—N3—C4—C5 160.74 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1B···O1i 0.90 (1) 2.21 (2) 3.0752 (19) 163 (2)
N2—H2···O1ii 0.85 (2) 2.03 (2) 2.8531 (18) 165 (2)

Symmetry codes: (i) −x, y−1/2, −z+1; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5219).

References

  1. Ahmad, S., Jabbar, A., Hussain, M. T. & Tahir, M. N. (2012). Acta Cryst. E68, o2269. [DOI] [PMC free article] [PubMed]
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Domiano, P., Pelizzi, C. & Predieri, G. (1984). Polyhedron, 3, 281–286.
  4. Dutkiewicz, G., Chidan Kumar, C. S., Narayana, B., Yathirajan, H. S. & Kubicki, M. (2009). Acta Cryst. E65, o3189. [DOI] [PMC free article] [PubMed]
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Kalsi, R., Shrimali, M., Bhalla, T. N. & Barthwal, J. P. (2006). Indian J. Pharm. Sci. 41, 353–359.
  7. Liu, G. & Gao, J. (2012). Acta Cryst. E68, o1969. [DOI] [PMC free article] [PubMed]
  8. Masunari, A. & Tavares, L. C. (2007). Bioorg. Med. Chem. 15, 4229–4236. [DOI] [PubMed]
  9. Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Singh, V., Srivastava, V. K., Palit, G. & Shanker, K. (1992). Arzneim. Forsch. Drug Res. 42, 993–996. [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812047381/is5219sup1.cif

e-68-o3436-sup1.cif (18.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812047381/is5219Isup2.hkl

e-68-o3436-Isup2.hkl (96.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812047381/is5219Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES