Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 24;68(Pt 12):o3437. doi: 10.1107/S1600536812046867

2,5-Dihexyl­thio­phene 1,1-dioxide

Johannes Van Tonder a, Mukut Gohain a, Nagarajan Loganathan a,*, Barend C B Bezuidenhoudt a
PMCID: PMC3589018  PMID: 23476254

Abstract

In the title mol­ecule, C16H28O2S, the two n-hexyl groups are in all-trans conformations. Their C atoms are situated close to the plane of the thio­phene ring with a maximum deviation of 0.718 (6) Å for one of the terminal methyl groups. In the crystal, a short C—H⋯O contact is observed between thio­phene 1,1-dioxide groups.

Related literature  

For the preparation of the title compound, see: Barbarella et al. (1998). For a review on thio­phene-1,1-dioxide derivatives and their applications, see: Nakayama et al. (1999). For the biological activity of sulfone compounds, see: Naesens et al. (2006); Kim et al. (2008); Sagardoy et al. (2010). graphic file with name e-68-o3437-scheme1.jpg

Experimental  

Crystal data  

  • C16H28O2S

  • M r = 284.44

  • Monoclinic, Inline graphic

  • a = 5.8249 (11) Å

  • b = 11.248 (2) Å

  • c = 27.207 (6) Å

  • β = 91.770 (8)°

  • V = 1781.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 293 K

  • 1.00 × 0.30 × 0.10 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2008) T min = 0.841, T max = 0.982

  • 18944 measured reflections

  • 3149 independent reflections

  • 2207 reflections with I > 2σ(I)

  • R int = 0.072

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.062

  • wR(F 2) = 0.167

  • S = 1.07

  • 3149 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008) and WinGX (Farrugia 2012); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812046867/gk2532sup1.cif

e-68-o3437-sup1.cif (22.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812046867/gk2532Isup2.hkl

e-68-o3437-Isup2.hkl (154.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812046867/gk2532Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.93 2.54 3.186 (3) 126

Symmetry code: (i) Inline graphic.

Acknowledgments

The University of the Free State and Sasol Ltd are gratefully acknowledged for the financial support. Special thanks to Professor Andreas Roodt.

supplementary crystallographic information

Comment

Tetrahydrothiophene 1,1-dioxide otherwise known as sulfolane, is an important industrial solvent used in the purification of natural gas, particularly for the extraction of aromatic hydrocarbon from the other hydrocarbon mixtures. Thiophene 1,1-dioxide is an important intermediate in the synthesis of various class of organic compounds. This class of compound is also known for their bioapplications (Nakayama et al., 1999; Naesens et al., 2006; Kim et al., 2008; Sagardoy et al., 2010). For example, some of them have been found to be effective inhibitors of hepatitis C virus polymerase (Kim et al., 2008).

The title compound, 2,5-dihexyl-thiophene-1,1-dioxide, was synthesized by the procedure of Barbarella et al. (1998).

Experimental

A mixture of 2,5-dihexylthiophene (0.500 g; 2.0 mmol) and NaHCO3 (0.667 g; 7.9 mmol; 4.0 eq) was taken in dichloromethane(30 ml) at 0 °C and allowed to stir vigorously for a few minutes. To which a freshly recrystallized (from dichloromethane) solid of m-chloroperbenzoic acid (1.411 g; 8.2 mmol; 4.1 eq.) was added in portion over 60 min. After 16hrs of stirring, the precipitate was removed by filtration and successively washed with dichloromethane (2 x 5 ml). The collective filtrate was then evaporated to dryness. Crystals of title compound were obtained as white needles from n-pentane. Yield: 0.304 g; 53.9%. 1H NMR (600 MHz, CDCl3) δ 6.28 – 6.24 (2H, m, H-3,4), 2.46 (4H, t, J = 7.7 Hz, H-1'), 1.68 – 1.61 (4H, m, H-2'), 1.41 – 1.34 (4H, m, H-3'), 1.33 – 1.26 (8H, m, H-4',5'), 0.91 – 0.86 (6H, m, H-6'). 13 C NMR (151 MHz, CDCl3) δ 144.08 (C-2,5), 121.80 (C-3,4), 31.51 (C-4',5'), 28.91 (C-3'), 26.67 (C-2'), 24.41 (C-1'), 22.63 (C-4',5'), 14.16 (C-6'). EI—MS m/z: 284.10 (35.47%; M+), 165.10 (78.57), 95.10 (100.00), 81.05 (83.06).

Refinement

All H atoms were positioned geometrically with C—H distances in the range 0.93 - 0.97 Å. and allowed to ride on their parent atoms, with Uiso(H) =1.2Ueq(C) except methyl group where Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with displacement ellipsoids shown at the 50% probability level.

Crystal data

C16H28O2S F(000) = 624
Mr = 284.44 Dx = 1.060 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4797 reflections
a = 5.8249 (11) Å θ = 2.4–23.1°
b = 11.248 (2) Å µ = 0.18 mm1
c = 27.207 (6) Å T = 293 K
β = 91.770 (8)° Needle, colourless
V = 1781.7 (6) Å3 1.00 × 0.30 × 0.10 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 3149 independent reflections
Radiation source: sealed tube 2207 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.072
φ and ω scans θmax = 25.1°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker 2008) h = −6→5
Tmin = 0.841, Tmax = 0.982 k = −13→13
18944 measured reflections l = −32→32

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0703P)2 + 0.6152P] where P = (Fo2 + 2Fc2)/3
3149 reflections (Δ/σ)max < 0.001
174 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Experimental. Crystal was mounted and automatically centered on a Bruker SMART X2S bench top crystallographic system. Data were collected at 20°C with 60 s/frame exposure time (total of 1260, width 0.5°) covering up to θ = 25.11° and 99.9% completeness accomplished.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.46906 (11) 1.12674 (5) 0.21332 (3) 0.0601 (3)
O1 0.3088 (3) 1.17815 (16) 0.17855 (8) 0.0747 (6)
O2 0.6195 (3) 1.20741 (15) 0.23951 (8) 0.0810 (7)
C1 0.3264 (5) 1.0326 (2) 0.25486 (11) 0.0626 (7)
C2 0.4059 (5) 0.9226 (2) 0.24780 (11) 0.0694 (8)
H2 0.3564 0.8578 0.2659 0.083*
C3 0.5755 (5) 0.9109 (2) 0.20979 (12) 0.0723 (9)
H3 0.6418 0.8382 0.2022 0.087*
C4 0.6296 (5) 1.0103 (2) 0.18666 (11) 0.0607 (7)
C5 0.7877 (5) 1.0372 (2) 0.14685 (13) 0.0754 (9)
H5A 0.8910 1.1002 0.1577 0.090*
H5B 0.6990 1.0664 0.1186 0.090*
C6 0.9293 (6) 0.9312 (3) 0.13111 (14) 0.0841 (9)
H6A 1.0245 0.9051 0.1589 0.101*
H6B 0.8260 0.8666 0.1222 0.101*
C7 1.0796 (6) 0.9554 (3) 0.08902 (15) 0.0989 (11)
H7A 1.1824 1.0204 0.0977 0.119*
H7B 0.9846 0.9806 0.0610 0.119*
C8 1.2227 (7) 0.8481 (4) 0.07397 (17) 0.1131 (13)
H8A 1.3208 0.8246 0.1017 0.136*
H8B 1.1196 0.7824 0.0665 0.136*
C9 1.3646 (10) 0.8683 (5) 0.0321 (2) 0.157 (2)
H9A 1.4668 0.9344 0.0396 0.189*
H9B 1.2660 0.8918 0.0044 0.189*
C10 1.5056 (10) 0.7652 (6) 0.0169 (2) 0.174 (2)
H10A 1.6233 0.7500 0.0416 0.261*
H10B 1.5751 0.7827 −0.0138 0.261*
H10C 1.4093 0.6963 0.0131 0.261*
C11 0.1562 (5) 1.0832 (2) 0.28819 (12) 0.0699 (8)
H11A 0.0457 1.1296 0.2689 0.084*
H11B 0.2345 1.1368 0.3110 0.084*
C12 0.0284 (6) 0.9910 (3) 0.31714 (13) 0.0772 (9)
H12A −0.0550 0.9395 0.2942 0.093*
H12B 0.1395 0.9423 0.3352 0.093*
C13 −0.1368 (6) 1.0412 (3) 0.35249 (13) 0.0923 (10)
H13A −0.2437 1.0931 0.3348 0.111*
H13B −0.0528 1.0889 0.3767 0.111*
C14 −0.2728 (7) 0.9448 (4) 0.37919 (16) 0.1160 (14)
H14A −0.3549 0.8971 0.3547 0.139*
H14B −0.1644 0.8929 0.3964 0.139*
C15 −0.4357 (10) 0.9875 (5) 0.4140 (2) 0.155 (2)
H15A −0.5433 1.0410 0.3974 0.186*
H15B −0.3547 1.0321 0.4396 0.186*
C16 −0.5686 (10) 0.8855 (7) 0.4373 (2) 0.192 (3)
H16A −0.6504 0.8417 0.4121 0.288*
H16B −0.6758 0.9174 0.4600 0.288*
H16C −0.4630 0.8336 0.4545 0.288*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0592 (4) 0.0319 (3) 0.0888 (5) −0.0010 (3) −0.0051 (4) 0.0004 (3)
O1 0.0735 (12) 0.0499 (10) 0.0999 (15) 0.0105 (9) −0.0096 (11) 0.0143 (10)
O2 0.0808 (13) 0.0438 (10) 0.1173 (17) −0.0150 (9) −0.0117 (12) −0.0124 (10)
C1 0.0659 (17) 0.0403 (13) 0.0810 (19) −0.0032 (12) −0.0056 (15) 0.0016 (12)
C2 0.081 (2) 0.0363 (13) 0.091 (2) −0.0026 (13) 0.0022 (17) 0.0073 (13)
C3 0.0754 (19) 0.0374 (13) 0.103 (2) 0.0078 (13) −0.0057 (18) −0.0004 (14)
C4 0.0541 (15) 0.0411 (13) 0.0864 (19) 0.0029 (12) −0.0040 (15) −0.0038 (13)
C5 0.0680 (19) 0.0589 (16) 0.099 (2) 0.0019 (15) −0.0018 (18) −0.0043 (16)
C6 0.073 (2) 0.075 (2) 0.104 (2) 0.0089 (17) 0.0018 (19) −0.0114 (19)
C7 0.088 (2) 0.100 (3) 0.109 (3) 0.008 (2) 0.014 (2) −0.013 (2)
C8 0.103 (3) 0.119 (3) 0.118 (3) 0.013 (3) 0.022 (3) −0.011 (3)
C9 0.147 (4) 0.176 (6) 0.150 (5) 0.038 (4) 0.033 (4) −0.011 (4)
C10 0.158 (5) 0.202 (6) 0.164 (5) 0.069 (4) 0.033 (4) −0.040 (5)
C11 0.0752 (19) 0.0464 (14) 0.088 (2) −0.0014 (14) 0.0038 (16) −0.0020 (14)
C12 0.081 (2) 0.0609 (17) 0.090 (2) −0.0078 (15) 0.0033 (18) 0.0062 (16)
C13 0.099 (3) 0.086 (2) 0.093 (2) −0.007 (2) 0.013 (2) 0.009 (2)
C14 0.108 (3) 0.135 (4) 0.106 (3) −0.004 (3) 0.019 (3) 0.021 (3)
C15 0.147 (4) 0.189 (6) 0.130 (4) −0.039 (4) 0.022 (4) 0.009 (4)
C16 0.152 (5) 0.277 (8) 0.149 (5) −0.087 (5) 0.016 (4) 0.075 (5)

Geometric parameters (Å, º)

S1—O1 1.4306 (19) C9—H9A 0.9700
S1—O2 1.4353 (19) C9—H9B 0.9700
S1—C1 1.774 (3) C10—H10A 0.9600
S1—C4 1.777 (3) C10—H10B 0.9600
C1—C2 1.337 (4) C10—H10C 0.9600
C1—C11 1.478 (4) C11—C12 1.512 (4)
C2—C3 1.458 (4) C11—H11A 0.9700
C2—H2 0.9300 C11—H11B 0.9700
C3—C4 1.325 (4) C12—C13 1.492 (5)
C3—H3 0.9300 C12—H12A 0.9700
C4—C5 1.475 (4) C12—H12B 0.9700
C5—C6 1.519 (4) C13—C14 1.539 (5)
C5—H5A 0.9700 C13—H13A 0.9700
C5—H5B 0.9700 C13—H13B 0.9700
C6—C7 1.488 (5) C14—C15 1.443 (6)
C6—H6A 0.9700 C14—H14A 0.9700
C6—H6B 0.9700 C14—H14B 0.9700
C7—C8 1.529 (5) C15—C16 1.533 (7)
C7—H7A 0.9700 C15—H15A 0.9700
C7—H7B 0.9700 C15—H15B 0.9700
C8—C9 1.446 (7) C16—H16A 0.9600
C8—H8A 0.9700 C16—H16B 0.9600
C8—H8B 0.9700 C16—H16C 0.9600
C9—C10 1.487 (7)
O1—S1—O2 116.66 (12) C8—C9—H9B 108.4
O1—S1—C1 110.71 (13) C10—C9—H9B 108.4
O2—S1—C1 110.61 (13) H9A—C9—H9B 107.5
O1—S1—C4 111.64 (13) C9—C10—H10A 109.5
O2—S1—C4 110.35 (13) C9—C10—H10B 109.5
C1—S1—C4 94.74 (13) H10A—C10—H10B 109.5
C2—C1—C11 133.4 (3) C9—C10—H10C 109.5
C2—C1—S1 106.8 (2) H10A—C10—H10C 109.5
C11—C1—S1 119.78 (19) H10B—C10—H10C 109.5
C1—C2—C3 115.5 (2) C1—C11—C12 113.9 (2)
C1—C2—H2 122.3 C1—C11—H11A 108.8
C3—C2—H2 122.3 C12—C11—H11A 108.8
C4—C3—C2 115.9 (2) C1—C11—H11B 108.8
C4—C3—H3 122.0 C12—C11—H11B 108.8
C2—C3—H3 122.0 H11A—C11—H11B 107.7
C3—C4—C5 133.2 (3) C13—C12—C11 114.4 (3)
C3—C4—S1 107.0 (2) C13—C12—H12A 108.6
C5—C4—S1 119.80 (19) C11—C12—H12A 108.6
C4—C5—C6 113.8 (3) C13—C12—H12B 108.6
C4—C5—H5A 108.8 C11—C12—H12B 108.6
C6—C5—H5A 108.8 H12A—C12—H12B 107.6
C4—C5—H5B 108.8 C12—C13—C14 112.9 (3)
C6—C5—H5B 108.8 C12—C13—H13A 109.0
H5A—C5—H5B 107.7 C14—C13—H13A 109.0
C7—C6—C5 114.3 (3) C12—C13—H13B 109.0
C7—C6—H6A 108.7 C14—C13—H13B 109.0
C5—C6—H6A 108.7 H13A—C13—H13B 107.8
C7—C6—H6B 108.7 C15—C14—C13 115.7 (4)
C5—C6—H6B 108.7 C15—C14—H14A 108.4
H6A—C6—H6B 107.6 C13—C14—H14A 108.4
C6—C7—C8 113.6 (3) C15—C14—H14B 108.4
C6—C7—H7A 108.8 C13—C14—H14B 108.4
C8—C7—H7A 108.8 H14A—C14—H14B 107.4
C6—C7—H7B 108.8 C14—C15—C16 111.9 (5)
C8—C7—H7B 108.8 C14—C15—H15A 109.2
H7A—C7—H7B 107.7 C16—C15—H15A 109.2
C9—C8—C7 114.6 (4) C14—C15—H15B 109.2
C9—C8—H8A 108.6 C16—C15—H15B 109.2
C7—C8—H8A 108.6 H15A—C15—H15B 107.9
C9—C8—H8B 108.6 C15—C16—H16A 109.5
C7—C8—H8B 108.6 C15—C16—H16B 109.5
H8A—C8—H8B 107.6 H16A—C16—H16B 109.5
C8—C9—C10 115.5 (5) C15—C16—H16C 109.5
C8—C9—H9A 108.4 H16A—C16—H16C 109.5
C10—C9—H9A 108.4 H16B—C16—H16C 109.5

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3···O2i 0.93 2.54 3.186 (3) 126

Symmetry code: (i) −x+3/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2532).

References

  1. Barbarella, G., Favaretto, L., Sotgiu, G., Zambianchi, M., Antolini, L., Pudova, O. & Bongini, A. (1998). J. Org. Chem. 63, 5497–5506.
  2. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2008). APEX2, SAINT-Plus and SADABS Bruker AXS Inc, Madison, Wisconsin, USA.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Kim, S. H., Tran, M. T., Ruebsam, F., Xiang, A. X., Ayida, B., McGuire, H., Ellis, D., Blazel, J., Tran, C. V., Murphy, D. E., Webber, S. E., Zhou, Y., Shah, A. M., Tsan, M., Showalter, R. E., Patel, R., Gobbi, A., LeBrun, L. A., Bartkowski, D. M., Nolan, T. G., Norris, D. A., Sergeeva, M. V., Kirkovsky, L., Zhao, Q., Han, Q. & Kissinger, C. R. (2008). Bioorg. Med. Chem. Lett. 18, 4181–4185. [DOI] [PubMed]
  6. Naesens, L., Stephens, C. E., Andrei, G., Loregian, A., De Bolle, L., Snoeck, R., Sowell, J. W. & De Clercq, E. (2006). Antivir. Res. 72, 60–67. [DOI] [PubMed]
  7. Nakayama, J. & Sugihara, Y. (1999). Top. Curr. Chem. 205, 131–195.
  8. Sagardoy, A. A., Gil, M. J., Villar, R., Viñas, M., Arrazola, A., Encío, I. & Martinez-Merino, V. (2010). Bioorg. Med. Chem. 18, 5701–5707. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812046867/gk2532sup1.cif

e-68-o3437-sup1.cif (22.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812046867/gk2532Isup2.hkl

e-68-o3437-Isup2.hkl (154.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812046867/gk2532Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES