Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 24;68(Pt 12):o3438–o3439. doi: 10.1107/S1600536812047666

2-Oxo-2H-chromen-4-yl 4-meth­oxy­benzoate

Akoun Abou a,*, Abdoulaye Djandé b, Grégoire Danger c, Adama Saba b, Rita Kakou-Yao a
PMCID: PMC3589019  PMID: 23476255

Abstract

In the title mol­ecule, C17H12O5, the chromen-2-one ring and the 4-meth­oxy­benzoate side chain are inclined to one another at a dihedral angle of 69.82 (9)°. The crystal structure features parallel sheets of centrosymmetric R 2 2(6) dimers joined by a C(7) chain, resulting in centrosymetric tetra­mers of hydrogen-bonded mol­ecules with graph-set motif R 4 4(40). These centrosymetric tetra­mers are connected by a pair of hydrogen bonds described by an R 2 2(8) ring motif and a C(7) chain via C—H⋯O inter­actions. In the structure, there are also π–π stacking inter­actions between chromene benzene and the six-membered heterocyclic rings [centroid–centroid distance = 3.691 (2) Å] and weak C=O⋯π inter­actions [O⋯(ring centroid) distance = 3.357 (3) Å].

Related literature  

For the biological activity of coumarin derivatives, see: Basanagouda et al. (2009); Vukovic et al. (2010); Emmanuel-Giota et al. (2001); Marchenko et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995). For π–π stacking inter­actions, see: Janiak (2000).graphic file with name e-68-o3438-scheme1.jpg

Experimental  

Crystal data  

  • C17H12O5

  • M r = 296.27

  • Triclinic, Inline graphic

  • a = 4.371 (1) Å

  • b = 10.535 (4) Å

  • c = 15.193 (2) Å

  • α = 85.218 (3)°

  • β = 83.688 (2)°

  • γ = 81.893 (1)°

  • V = 686.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.25 × 0.15 × 0.04 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • 5683 measured reflections

  • 2731 independent reflections

  • 1540 reflections with I > 2σ(I)

  • R int = 0.055

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.066

  • wR(F 2) = 0.163

  • S = 1.11

  • 2731 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97, publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812047666/zs2245sup1.cif

e-68-o3438-sup1.cif (24.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812047666/zs2245Isup2.hkl

e-68-o3438-Isup2.hkl (131.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812047666/zs2245Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O2i 0.93 2.48 3.407 (4) 173
C2—H2⋯O4ii 0.93 2.49 3.340 (4) 151
C17—H17B⋯O5iii 0.96 2.59 3.461 (4) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Spectropôle Service of the Faculty of Sciences and Techniques of Saint Jérôme (France) for the use of the diffractometer and the NMR spectrometer.

supplementary crystallographic information

Comment

Coumarin constitutes one of the major classes of naturally occurring compounds and interest in its chemistry continues unabated because of its usefulness as a biologically active agent. It also represents the core structure of several molecules of pharmaceutical importance. Coumarin and its derivatives have been reported to serve as anti-bacterial (Basanagouda et al., 2009), anti-oxidant (Vukovic et al., 2010), anti-inflammatory (Emmanuel-Giota et al., 2001) and anti-tumour agents (Marchenko, et al., 2006). Therefore, the synthesis of new coumarin derivatives is of considerable interest. In order to study the influence of new substituents on the activity of the coumarin derivatives, the title compound, the ester C17H12O5 has been synthesized and its molecular and crystal structure is reported herein.

In the title compound (Fig. 1), the side chain is tilted with respect to the chromen-2-one ring with torsion angles C1—C9—O3—C10 = -76.3 (4)° and C8—C9—O3—C10 = 107.7 (3)°. The dihedral angle between the chromene ring and the side chain is 69.82 (9) °.

In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 1) generate hydrogen-bonding motifs ranging from a chain to various rings. Indeed, in the methoxy group, an H atom of the methyl group (H17B) bonds to the oxygen atom of the same group on a neighbouring molecule (related by an inversion center) to form parallel sheets of centrosymetric dimers [graph set R22(6) (Bernstein et al., 1995)]. Also, a hydrogen of the chromene-benzene ring (H2) bonds to the oxygen atom of the carbonyl group of the side chain of a neighbouring molecule to form an infinite chain [graph set C(7)]. The combination of the C(7) chain and the R22(6) dimers results in a ring of hydrogen-bonded molecules described by the graph set R44(40) (Fig. 2). Further, the hydrogen of the six-membered heterocyclic ring bonds to the oxygen atom of the carbonyl group of the chromen-2-one moiety of an inversion-related neighbouring molecule to form a pair of hydrogen bonds [graph set R22(8)]. The latter hydrogen bonds and the C(7) chain connect the R44(40) centrosymmetric tetramers, resulting in a supramolecular aggregation (Fig. 3) which is further consolidated by weak C═ O···π interactions [O2···Cg1 (x - 1, y, z) = 3.357 (3) Å], where Cg1 is the centroid of the six-membered O containing ring, and π–π stacking between the chromene-benzene C1—C6 and the six-membered heterocyclic rings; in the latter, the centroid···centroid distance, [Cg2···Cg1 (x + 1, y, z) or Cg1···Cg2 (x - 1, y, z) = 3.691 (2) Å], is less than 3.8 Å, the maximum regarded as relevant for π–π interactions (Janiak, 2000) (Fig. 4).

Experimental

To a solution of 4-methoxybenzoyl chloride (40 mmol) in dried tetrahydrofuran (150 ml), was added dried triethylamine (120 mmol) and 4-hydroxycoumarin (40 mmol)in small portions over 30 min. The mixture was then refluxed for 3 h and poured in 300 ml of chloroform. The solution was acidified with dilute hydrochloric acid until the pH was 2–3. The organic layer was extracted, washed with water, dried over MgSO4 and the solvent removed. The crude product was recrystallized from chloroform. Colourless crystals of the title compound were obtained in a good yield (84%); m.p. 421–422 K. 1H NMR (Bruker TOPSPIN, CDCl3, 400 MHz, p.p.m.) δ: 6.63 (s, 1H, H8); 7.43 (d, 1H, H2); 7.33 (t.d, 1H, H3); 7.61 (t.d,1H, H4); 7.73 (d, 1H, H5); 8.2 (d, 2H, H12 and H16); 7.05 (d, 2H, H13 and H15); 3.93 (s, 3H, CH3). 13C NMR (Bruker TOPSPIN, CDCl3, 100 MHz, p.p.m.) δ: 162 (C7); 108 (C8); 161 (C9); 127 (C2); 124 (C3); 117 (C4); 126 (C5); 153 (C6); 115 (C1); 165 (C10); 160 (C11); 133 (C12 and C16); 113 (C13 and C15); 120 (C14); 55 (C17).

Refinement

H atoms were placed in calculated positions [C—H = 0.93 (aromatic) or 0.96 Å (methyl group)] and refined using a riding model approximation with Uiso(H) constrained to 1.2 (aromatic) or 1.5 (methyl) times Ueq of the respective parent atom. The five reflections (1 - 5 17), (0 - 1 1), (0 0 1), (0 1 0), (1 0 1) were found to have too low intensities, caused by a systematic error, probably by shielding by the beam stop interference. They were omitted from the refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The crystal packing, viewed down the c axis, showing parallel sheets of centrosymmetric R22(6) dimers linked by an infinite C(7) chain to form a centrosymetric R44(40) tetramers. The dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted for clarity.

Fig. 3.

Fig. 3.

The crystal packing, viewed down the c axis, showing the supramolecular aggregation formed by the propagation of the centrosymetric R44(40) tetramers via C—H···O hydrogen bonds. The dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.

Fig. 4.

Fig. 4.

A view of the crystal packing, showing C═O···π and π–π stacking interactions (dashed lines). The green dots are centroids of rings. H atoms have been omitted.

Crystal data

C17H12O5 Z = 2
Mr = 296.27 F(000) = 308
Triclinic, P1 Dx = 1.433 Mg m3
Hall symbol: -P 1 Melting point = 421–422 K
a = 4.371 (1) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.535 (4) Å Cell parameters from 5683 reflections
c = 15.193 (2) Å θ = 2.3–27.0°
α = 85.218 (3)° µ = 0.11 mm1
β = 83.688 (2)° T = 298 K
γ = 81.893 (1)° Prism, colourless
V = 686.8 (3) Å3 0.25 × 0.15 × 0.04 mm

Data collection

Nonius KappaCCD diffractometer 1540 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.055
Graphite monochromator θmax = 27.0°, θmin = 2.3°
φ and ω scans h = 0→5
5683 measured reflections k = −12→13
2731 independent reflections l = −18→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163 H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0324P)2 + 0.5861P] where P = (Fo2 + 2Fc2)/3
2731 reflections (Δ/σ)max < 0.001
200 parameters Δρmax = 0.17 e Å3
0 restraints Δρmin = −0.23 e Å3
48 constraints

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O3 0.1598 (5) 0.05340 (19) 0.31179 (13) 0.0542 (6)
O1 −0.3230 (5) 0.3325 (2) 0.47003 (14) 0.0528 (6)
O2 −0.5808 (6) 0.1879 (2) 0.54685 (17) 0.0722 (7)
C11 0.2683 (7) −0.0573 (3) 0.1811 (2) 0.0447 (7)
O4 −0.1068 (6) 0.1288 (2) 0.19569 (15) 0.0656 (7)
O5 0.7433 (6) −0.3598 (2) 0.04518 (16) 0.0702 (7)
C5 −0.0670 (8) 0.4966 (3) 0.3926 (2) 0.0525 (8)
H5 −0.1839 0.5552 0.4297 0.063*
C9 −0.0098 (7) 0.1490 (3) 0.3629 (2) 0.0459 (8)
C1 0.0601 (7) 0.2784 (3) 0.3473 (2) 0.0443 (7)
C6 −0.1068 (7) 0.3679 (3) 0.4027 (2) 0.0455 (8)
C14 0.5790 (7) −0.2567 (3) 0.0861 (2) 0.0512 (8)
C10 0.0876 (8) 0.0505 (3) 0.2267 (2) 0.0500 (8)
C4 0.1473 (8) 0.5360 (3) 0.3273 (2) 0.0586 (9)
H4 0.1758 0.6222 0.3199 0.070*
C7 −0.3849 (8) 0.2081 (3) 0.4861 (2) 0.0532 (8)
C12 0.4725 (7) −0.1501 (3) 0.2215 (2) 0.0510 (8)
H12 0.5054 −0.1455 0.2805 0.061*
C15 0.3792 (8) −0.1649 (3) 0.0454 (2) 0.0612 (10)
H15 0.3468 −0.1691 −0.0138 0.073*
C8 −0.2172 (8) 0.1147 (3) 0.4278 (2) 0.0520 (8)
H8 −0.2550 0.0296 0.4359 0.062*
C13 0.6278 (8) −0.2498 (3) 0.1738 (2) 0.0565 (9)
H13 0.7656 −0.3125 0.2008 0.068*
C16 0.2264 (8) −0.0658 (3) 0.0939 (2) 0.0618 (10)
H16 0.0905 −0.0027 0.0665 0.074*
C3 0.3223 (8) 0.4490 (3) 0.2719 (2) 0.0585 (9)
H3 0.4692 0.4768 0.2283 0.070*
C2 0.2795 (7) 0.3217 (3) 0.2813 (2) 0.0525 (8)
H2 0.3965 0.2639 0.2437 0.063*
C17 0.7156 (10) −0.3667 (4) −0.0473 (2) 0.0784 (12)
H17A 0.5023 −0.3692 −0.0560 0.118*
H17B 0.8401 −0.4429 −0.0680 0.118*
H17C 0.7859 −0.2924 −0.0800 0.118*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O3 0.0695 (15) 0.0459 (12) 0.0453 (13) 0.0091 (10) −0.0096 (11) −0.0155 (10)
O1 0.0634 (14) 0.0459 (13) 0.0478 (13) −0.0031 (10) 0.0020 (11) −0.0138 (10)
O2 0.0892 (19) 0.0661 (16) 0.0575 (16) −0.0115 (13) 0.0144 (14) −0.0096 (12)
C11 0.0515 (19) 0.0393 (17) 0.0429 (18) −0.0017 (13) −0.0024 (14) −0.0103 (14)
O4 0.0724 (16) 0.0624 (15) 0.0601 (15) 0.0189 (12) −0.0207 (13) −0.0215 (12)
O5 0.0938 (19) 0.0529 (14) 0.0594 (16) 0.0174 (13) −0.0090 (13) −0.0219 (12)
C5 0.060 (2) 0.0451 (19) 0.054 (2) 0.0007 (15) −0.0131 (17) −0.0166 (15)
C9 0.057 (2) 0.0391 (17) 0.0418 (18) 0.0060 (14) −0.0117 (16) −0.0130 (14)
C1 0.0482 (18) 0.0443 (18) 0.0404 (17) 0.0026 (14) −0.0096 (14) −0.0106 (14)
C6 0.0508 (19) 0.0458 (18) 0.0407 (18) −0.0030 (14) −0.0080 (15) −0.0095 (14)
C14 0.060 (2) 0.0394 (17) 0.053 (2) 0.0007 (15) −0.0023 (16) −0.0139 (15)
C10 0.055 (2) 0.0488 (19) 0.047 (2) −0.0023 (16) −0.0085 (16) −0.0116 (15)
C4 0.070 (2) 0.047 (2) 0.061 (2) −0.0107 (17) −0.0139 (19) −0.0028 (17)
C7 0.065 (2) 0.049 (2) 0.045 (2) −0.0026 (16) −0.0074 (17) −0.0086 (15)
C12 0.063 (2) 0.0443 (18) 0.0452 (19) −0.0020 (15) −0.0084 (16) −0.0076 (15)
C15 0.077 (2) 0.059 (2) 0.047 (2) 0.0108 (18) −0.0159 (18) −0.0186 (17)
C8 0.066 (2) 0.0430 (18) 0.0464 (19) −0.0012 (15) −0.0070 (17) −0.0073 (15)
C13 0.071 (2) 0.0420 (18) 0.053 (2) 0.0105 (16) −0.0108 (17) −0.0073 (16)
C16 0.078 (2) 0.054 (2) 0.051 (2) 0.0165 (17) −0.0171 (18) −0.0157 (17)
C3 0.065 (2) 0.062 (2) 0.051 (2) −0.0137 (17) −0.0056 (17) −0.0051 (17)
C2 0.056 (2) 0.057 (2) 0.0447 (19) 0.0012 (16) −0.0072 (16) −0.0129 (15)
C17 0.103 (3) 0.071 (3) 0.057 (2) 0.015 (2) −0.006 (2) −0.029 (2)

Geometric parameters (Å, º)

O3—C10 1.368 (4) C14—C15 1.365 (4)
O3—C9 1.400 (3) C14—C13 1.381 (4)
O1—C7 1.373 (4) C4—C3 1.387 (5)
O1—C6 1.379 (4) C4—H4 0.9300
O2—C7 1.214 (4) C7—C8 1.445 (4)
C11—C16 1.369 (4) C12—C13 1.381 (4)
C11—C12 1.380 (4) C12—H12 0.9300
C11—C10 1.467 (4) C15—C16 1.379 (4)
O4—C10 1.204 (4) C15—H15 0.9300
O5—C14 1.370 (3) C8—H8 0.9300
O5—C17 1.433 (4) C13—H13 0.9300
C5—C4 1.368 (4) C16—H16 0.9300
C5—C6 1.385 (4) C3—C2 1.373 (4)
C5—H5 0.9300 C3—H3 0.9300
C9—C8 1.327 (4) C2—H2 0.9300
C9—C1 1.434 (4) C17—H17A 0.9600
C1—C6 1.391 (4) C17—H17B 0.9600
C1—C2 1.403 (4) C17—H17C 0.9600
C10—O3—C9 117.2 (2) O1—C7—C8 116.9 (3)
C7—O1—C6 122.2 (2) C11—C12—C13 119.6 (3)
C16—C11—C12 119.0 (3) C11—C12—H12 120.2
C16—C11—C10 117.4 (3) C13—C12—H12 120.2
C12—C11—C10 123.6 (3) C14—C15—C16 118.4 (3)
C14—O5—C17 117.5 (3) C14—C15—H15 120.8
C4—C5—C6 118.9 (3) C16—C15—H15 120.8
C4—C5—H5 120.6 C9—C8—C7 120.8 (3)
C6—C5—H5 120.6 C9—C8—H8 119.6
C8—C9—O3 118.5 (3) C7—C8—H8 119.6
C8—C9—C1 122.3 (3) C12—C13—C14 120.2 (3)
O3—C9—C1 119.1 (3) C12—C13—H13 119.9
C6—C1—C2 117.9 (3) C14—C13—H13 119.9
C6—C1—C9 116.4 (3) C11—C16—C15 122.1 (3)
C2—C1—C9 125.7 (3) C11—C16—H16 118.9
O1—C6—C5 116.8 (3) C15—C16—H16 118.9
O1—C6—C1 121.3 (3) C2—C3—C4 120.2 (3)
C5—C6—C1 121.9 (3) C2—C3—H3 119.9
C15—C14—O5 123.9 (3) C4—C3—H3 119.9
C15—C14—C13 120.6 (3) C3—C2—C1 120.4 (3)
O5—C14—C13 115.5 (3) C3—C2—H2 119.8
O4—C10—O3 121.8 (3) C1—C2—H2 119.8
O4—C10—C11 125.8 (3) O5—C17—H17A 109.5
O3—C10—C11 112.4 (3) O5—C17—H17B 109.5
C5—C4—C3 120.8 (3) H17A—C17—H17B 109.5
C5—C4—H4 119.6 O5—C17—H17C 109.5
C3—C4—H4 119.6 H17A—C17—H17C 109.5
O2—C7—O1 116.6 (3) H17B—C17—H17C 109.5
O2—C7—C8 126.4 (3)
C10—O3—C9—C8 107.7 (3) C6—C5—C4—C3 0.0 (5)
C10—O3—C9—C1 −76.3 (4) C6—O1—C7—O2 −179.7 (3)
C8—C9—C1—C6 −1.4 (4) C6—O1—C7—C8 −1.3 (4)
O3—C9—C1—C6 −177.3 (3) C16—C11—C12—C13 −0.6 (5)
C8—C9—C1—C2 178.8 (3) C10—C11—C12—C13 178.6 (3)
O3—C9—C1—C2 2.9 (5) O5—C14—C15—C16 179.8 (3)
C7—O1—C6—C5 179.5 (3) C13—C14—C15—C16 −0.3 (5)
C7—O1—C6—C1 0.1 (4) O3—C9—C8—C7 176.2 (3)
C4—C5—C6—O1 179.4 (3) C1—C9—C8—C7 0.3 (5)
C4—C5—C6—C1 −1.3 (5) O2—C7—C8—C9 179.3 (3)
C2—C1—C6—O1 −179.0 (3) O1—C7—C8—C9 1.1 (5)
C9—C1—C6—O1 1.2 (4) C11—C12—C13—C14 0.0 (5)
C2—C1—C6—C5 1.7 (4) C15—C14—C13—C12 0.5 (5)
C9—C1—C6—C5 −178.1 (3) O5—C14—C13—C12 −179.7 (3)
C17—O5—C14—C15 3.8 (5) C12—C11—C16—C15 0.7 (5)
C17—O5—C14—C13 −176.1 (3) C10—C11—C16—C15 −178.5 (3)
C9—O3—C10—O4 2.2 (5) C14—C15—C16—C11 −0.3 (6)
C9—O3—C10—C11 −177.0 (3) C5—C4—C3—C2 0.9 (5)
C16—C11—C10—O4 4.1 (5) C4—C3—C2—C1 −0.5 (5)
C12—C11—C10—O4 −175.1 (3) C6—C1—C2—C3 −0.8 (5)
C16—C11—C10—O3 −176.7 (3) C9—C1—C2—C3 179.0 (3)
C12—C11—C10—O3 4.1 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C8—H8···O2i 0.93 2.48 3.407 (4) 173
C2—H2···O4ii 0.93 2.49 3.340 (4) 151
C17—H17B···O5iii 0.96 2.59 3.461 (4) 151

Symmetry codes: (i) −x−1, −y, −z+1; (ii) x+1, y, z; (iii) −x+2, −y−1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2245).

References

  1. Basanagouda, M., Kulkarni, M. V., Sharma, D., Gupta, V. K., Sandhyarani, P. & Rasal, V. P. (2009). J. Chem. Sci. 121, 485–495.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  4. Emmanuel-Giota, A. A., Fylaktakidou, K. C., Hadjipavlou-Litina, D. J., Litinas, K. E. & Nicolaides, D. N. (2001). J. Heterocycl. Chem. 38, 717–722.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  7. Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.
  8. Marchenko, M. M., Kopyl’chuk, G. P., Shmarakov, I. A., Ketsa, O. V. & Kushnir, V. M. (2006). Pharm. Chem. J. 40, 296–297.
  9. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Vukovic, N., Sukdolak, S., Solujic, S. & Niciforovic, N. (2010). Arch. Pharm. Res. 33, 5–15. [DOI] [PubMed]
  13. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812047666/zs2245sup1.cif

e-68-o3438-sup1.cif (24.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812047666/zs2245Isup2.hkl

e-68-o3438-Isup2.hkl (131.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812047666/zs2245Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES