Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 24;68(Pt 12):o3450. doi: 10.1107/S1600536812047058

4,4′-Bipyridine-1,1′-diium bis­(1,3-benzo­thia­zole-2-thiol­ate)

Yu-Han Jiang a, Qi-Ming Qiu a, Min Liu b, Qiong-Hua Jin a,*, Cun-Lin Zhang c
PMCID: PMC3589027  PMID: 23476263

Abstract

In the title salt, C10H10N2 2+·2C7H4NS2 , the complete 4,4′-bipyridine-1,1′-diium dication is generated by a center of symmetry. In the crystal, N—H⋯N hydrogen bonds are observed between the cations and anions.

Related literature  

For ligands based on 2-mercaptobenzothia­zole in coordination chemistry, see: Chen et al. (2010) and for ligands based on 4,4′- bipyridine, see: Biradha et al. (1999); Ren et al. (2004); Tao et al. (2000); Tong et al. (2000); Xu et al. (2012). For a related structure, see: Deng et al. (2005).graphic file with name e-68-o3450-scheme1.jpg

Experimental  

Crystal data  

  • C10H10N2 2+·2C7H4NS2

  • M r = 490.66

  • Monoclinic, Inline graphic

  • a = 14.3909 (13) Å

  • b = 5.6670 (4) Å

  • c = 15.5471 (14) Å

  • β = 109.023 (2)°

  • V = 1198.67 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 298 K

  • 0.32 × 0.30 × 0.26 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.878, T max = 0.900

  • 5663 measured reflections

  • 2116 independent reflections

  • 990 reflections with I > 2σ(I)

  • R int = 0.055

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.203

  • S = 1.04

  • 2116 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812047058/jj2151sup1.cif

e-68-o3450-sup1.cif (20.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812047058/jj2151Isup2.hkl

e-68-o3450-Isup2.hkl (104.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1i 0.86 1.93 2.790 (6) 178

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by National Natural Science Foundation of China (No.21171119), the National High Technology Research and Development Program 863 of China (No. 2012 A A063201), Beijing Personnel Bureau, the National Keystone Basic Research Program (973 Program) under grant Nos. 2007CB310408 and 2006CB302901 and the Committee of Education of the Beijing Foundation of China (grant No. KM201210028020).

supplementary crystallographic information

Comment

The 4,4'-bipyridine lignad is ideal for forming supramolecular structures. Many examples in coordination with multifarious metals are observed (Biradha et al., 1999; Tong et al., 2000; Tao et al., 2000; Ren et al., 2004; Xu et al., 2012). However, to our best knowledge, only a few Ag(I)-Hmbt (Hmbt = 2-mercaptobenzothiazole) framework structures have been reported (Chen et al., 2010). In our work synthesizing an Ag(I)-Hmbt complex containing the 4,4'-bipyridine, the title compound, (I), (C10H10N2).(C7H4NS2)2 was unexpectedly obtained.

The crystal structure of the title compound, (I), consists of one mbt (mercaptobenzothiazole) anion and one 4-pyridyl unit containg a center of symmetry which upon expansion produces a 4,4'-bipyridine-1,1'-diium cation and two mbt cations in the asymmetric unit (Fig. 1). Crystal packing reveals that N—H···N intermolecular hydrogen bonds are observed between the centrosymmetric 4,4'-bipyridine-1,1'-diium cation and two mbt anions (Fig. 2; Table 1). These observed hydrogen bonds are similar to those reported in a similar and related compound, (C10H8N2)(C2H3N3S2)2, (Deng et al., 2005).

Experimental

A mixture of AgBr (0.2 mmol) and 2-mercaptobenzothiazole (0.2 mmol) in MeOH and CH2Cl2 (10 mL, v/v = 1:1) was stirred for 2 h and triphenylphosphine (PPh3)(0.2 mmol) was added to the mixture which was stirred for another 5 h. The insoluble residues were removed by filtration. The filtrate was then evaporated slowly at room temperature for a week to yield colorless crystalline products. Anal. Calc. for C24H18N4S4: C, 58.70; H, 3.67; N, 11.41. Found: C, 58.49; H, 3.79; N, 11.22%. Melting point: 427–431°K.

Refinement

All H atoms were located in the calculated sites and included in the final refinement in the riding model approximation with displacement parameters derived from the parent atoms to which they were bonded (Uiso(H) = 1.2Ueq). C—H hydrogen atoms (aromatic) were included with distance set to 0.93 Å and amide N—H hydrogen atoms were included with distance set to 0.86 Å.

Figures

Fig. 1.

Fig. 1.

The molecular entities of the title compound, showing the atom-numbering scheme of the 4-pyridyl and mercaptobenzothiazole units and the symmetry expanded 4,4'-bipyridine-1,1'-diium cation and two mbt cation units with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the packing in (I) along the b axis. Dashed lines indicate N—H···N hydrogen bonds. H atoms not involved in hydrogen bonding have been removed for clarity.

Crystal data

C10H10N22+·2C7H4NS2 F(000) = 508
Mr = 490.66 Dx = 1.359 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1198 reflections
a = 14.3909 (13) Å θ = 2.7–20.7°
b = 5.6670 (4) Å µ = 0.42 mm1
c = 15.5471 (14) Å T = 298 K
β = 109.023 (2)° Block, colorless
V = 1198.67 (17) Å3 0.32 × 0.30 × 0.26 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer 2116 independent reflections
Radiation source: fine-focus sealed tube 990 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.055
phi and ω scans θmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −17→11
Tmin = 0.878, Tmax = 0.900 k = −6→6
5663 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.203 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0797P)2 + 0.6601P] where P = (Fo2 + 2Fc2)/3
2116 reflections (Δ/σ)max < 0.001
145 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.2335 (3) 0.3414 (7) 0.7956 (2) 0.0629 (11)
N2 0.6509 (3) 0.4638 (7) 0.6145 (3) 0.0700 (11)
H2 0.6875 0.5792 0.6419 0.084*
S1 0.16856 (12) 0.6851 (3) 0.68804 (10) 0.1018 (7)
S2 0.30080 (16) 0.3128 (4) 0.65559 (11) 0.1352 (9)
C1 0.2387 (4) 0.4264 (10) 0.7171 (3) 0.0812 (16)
C2 0.1755 (3) 0.4737 (9) 0.8346 (3) 0.0586 (12)
C3 0.1353 (4) 0.6727 (10) 0.7852 (3) 0.0720 (14)
C4 0.0782 (4) 0.8244 (11) 0.8160 (5) 0.102 (2)
H4 0.0515 0.9598 0.7835 0.122*
C5 0.0617 (5) 0.7703 (13) 0.8960 (6) 0.112 (2)
H5 0.0217 0.8680 0.9170 0.135*
C6 0.1030 (5) 0.5758 (13) 0.9448 (4) 0.0991 (19)
H6 0.0921 0.5448 0.9995 0.119*
C7 0.1601 (3) 0.4255 (9) 0.9152 (3) 0.0700 (14)
H7 0.1879 0.2929 0.9491 0.084*
C8 0.5934 (4) 0.3548 (11) 0.6502 (4) 0.0888 (18)
H8 0.5926 0.4038 0.7070 0.107*
C9 0.5343 (4) 0.1726 (11) 0.6091 (4) 0.0888 (17)
H9 0.4955 0.0979 0.6385 0.107*
C10 0.5317 (3) 0.0987 (8) 0.5244 (3) 0.0549 (12)
C11 0.5936 (4) 0.2124 (10) 0.4888 (3) 0.0843 (17)
H11 0.5967 0.1676 0.4322 0.101*
C12 0.6507 (4) 0.3907 (11) 0.5350 (4) 0.0914 (19)
H12 0.6923 0.4653 0.5086 0.110*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.068 (2) 0.077 (3) 0.046 (2) −0.008 (2) 0.0210 (19) 0.002 (2)
N2 0.060 (2) 0.070 (3) 0.072 (3) −0.015 (2) 0.010 (2) −0.002 (2)
S1 0.1082 (12) 0.1031 (13) 0.0740 (9) −0.0164 (10) 0.0019 (8) 0.0351 (9)
S2 0.1740 (19) 0.177 (2) 0.0824 (11) −0.0039 (16) 0.0806 (12) 0.0087 (12)
C1 0.086 (4) 0.105 (5) 0.051 (3) −0.020 (3) 0.020 (3) 0.013 (3)
C2 0.057 (3) 0.059 (3) 0.054 (3) −0.004 (2) 0.010 (2) 0.001 (2)
C3 0.063 (3) 0.058 (3) 0.077 (3) −0.009 (3) −0.002 (3) 0.005 (3)
C4 0.074 (4) 0.061 (4) 0.141 (6) 0.008 (3) −0.004 (4) 0.000 (4)
C5 0.091 (5) 0.094 (6) 0.146 (7) 0.011 (4) 0.031 (5) −0.035 (5)
C6 0.103 (5) 0.105 (5) 0.095 (4) 0.012 (4) 0.040 (4) −0.018 (4)
C7 0.076 (3) 0.069 (3) 0.068 (3) 0.005 (3) 0.027 (3) −0.004 (3)
C8 0.089 (4) 0.108 (5) 0.077 (4) −0.031 (4) 0.038 (3) −0.019 (3)
C9 0.085 (4) 0.116 (5) 0.081 (4) −0.027 (4) 0.049 (3) −0.015 (4)
C10 0.044 (3) 0.061 (3) 0.057 (3) 0.004 (2) 0.013 (2) 0.011 (2)
C11 0.099 (4) 0.103 (4) 0.054 (3) −0.035 (4) 0.029 (3) −0.007 (3)
C12 0.109 (4) 0.112 (5) 0.058 (3) −0.040 (4) 0.033 (3) 0.001 (3)

Geometric parameters (Å, º)

N1—C1 1.337 (5) C5—H5 0.9300
N1—C2 1.399 (5) C6—C7 1.363 (7)
N2—C8 1.294 (6) C6—H6 0.9300
N2—C12 1.303 (6) C7—H7 0.9300
N2—H2 0.8600 C8—C9 1.358 (7)
S1—C3 1.728 (6) C8—H8 0.9300
S1—C1 1.754 (6) C9—C10 1.371 (6)
S2—C1 1.638 (6) C9—H9 0.9300
C2—C7 1.370 (6) C10—C11 1.355 (6)
C2—C3 1.381 (6) C10—C10i 1.487 (8)
C3—C4 1.378 (8) C11—C12 1.352 (7)
C4—C5 1.375 (9) C11—H11 0.9300
C4—H4 0.9300 C12—H12 0.9300
C5—C6 1.361 (9)
C1—N1—C2 115.0 (4) C5—C6—H6 119.3
C8—N2—C12 116.8 (5) C7—C6—H6 119.3
C8—N2—H2 121.6 C6—C7—C2 118.6 (5)
C12—N2—H2 121.6 C6—C7—H7 120.7
C3—S1—C1 92.4 (3) C2—C7—H7 120.7
N1—C1—S2 126.5 (5) N2—C8—C9 123.5 (5)
N1—C1—S1 109.7 (4) N2—C8—H8 118.3
S2—C1—S1 123.8 (3) C9—C8—H8 118.3
C7—C2—C3 120.6 (5) C8—C9—C10 120.1 (5)
C7—C2—N1 126.0 (4) C8—C9—H9 120.0
C3—C2—N1 113.4 (4) C10—C9—H9 120.0
C4—C3—C2 120.3 (5) C11—C10—C9 115.6 (4)
C4—C3—S1 130.1 (5) C11—C10—C10i 121.7 (5)
C2—C3—S1 109.6 (4) C9—C10—C10i 122.7 (5)
C5—C4—C3 118.3 (6) C12—C11—C10 120.3 (5)
C5—C4—H4 120.9 C12—C11—H11 119.8
C3—C4—H4 120.9 C10—C11—H11 119.8
C6—C5—C4 120.8 (6) N2—C12—C11 123.7 (5)
C6—C5—H5 119.6 N2—C12—H12 118.1
C4—C5—H5 119.6 C11—C12—H12 118.1
C5—C6—C7 121.3 (6)
C2—N1—C1—S2 179.6 (4) C3—C4—C5—C6 1.9 (10)
C2—N1—C1—S1 0.0 (5) C4—C5—C6—C7 −1.6 (10)
C3—S1—C1—N1 0.9 (4) C5—C6—C7—C2 0.1 (8)
C3—S1—C1—S2 −178.8 (4) C3—C2—C7—C6 1.0 (7)
C1—N1—C2—C7 −178.8 (4) N1—C2—C7—C6 178.6 (5)
C1—N1—C2—C3 −1.1 (6) C12—N2—C8—C9 −0.2 (8)
C7—C2—C3—C4 −0.6 (7) N2—C8—C9—C10 −1.5 (9)
N1—C2—C3—C4 −178.5 (4) C8—C9—C10—C11 2.4 (8)
C7—C2—C3—S1 179.5 (4) C8—C9—C10—C10i −179.7 (5)
N1—C2—C3—S1 1.7 (5) C9—C10—C11—C12 −1.8 (8)
C1—S1—C3—C4 178.7 (5) C10i—C10—C11—C12 −179.7 (5)
C1—S1—C3—C2 −1.5 (4) C8—N2—C12—C11 0.9 (8)
C2—C3—C4—C5 −0.8 (8) C10—C11—C12—N2 0.1 (9)
S1—C3—C4—C5 179.0 (5)

Symmetry code: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···N1ii 0.86 1.93 2.790 (6) 178

Symmetry code: (ii) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2151).

References

  1. Biradha, K., Domasevitch, K. V., Moulton, B., Seward, C. & Zaworotko, M. J. (1999). Chem. Commun. pp. 1327–1328.
  2. Bruker (2007). SMART, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chen, S. C., Yu, R. M., Zhao, Z. G., Chen, S. M., Zhang, Q. S., Wu, X. Y., Wang, F. & Lu, C. Z. (2010). Cryst. Growth Des. 10, 1155–1160.
  4. Deng, Q.-J., Yao, M.-X. & Zeng, M.-H. (2005). Acta Cryst. E61, o2239–o2240.
  5. Ren, C.-X., Cheng, L., Chen, X.-M. & Ng, S. W. (2004). Acta Cryst. E60, m364–m366.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Tao, J., Tong, M. L., Shi, J. X., Chen, X. M. & Ng, S. W. (2000). Chem. Commun. pp. 2043–2044.
  8. Tong, M. L., Zheng, S. L. & Chen, X. M. (2000). Polyhedron, 19, 1809–1814.
  9. Xu, S., Dai, Y.-C., Qiu, Q.-M., Jin, Q.-H. & Zhang, C.-L. (2012). Acta Cryst. E68, m1222–m1223. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812047058/jj2151sup1.cif

e-68-o3450-sup1.cif (20.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812047058/jj2151Isup2.hkl

e-68-o3450-Isup2.hkl (104.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES