Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 28;68(Pt 12):o3459. doi: 10.1107/S1600536812047940

Diphenyl (isopropyl­amido)­phosphate

Fahimeh Sabbaghi a,*, Mehrdad Pourayoubi b, Marek Nečas c, Michal Babiak c
PMCID: PMC3589035  PMID: 23476271

Abstract

The P atom in the title compound, C15H18NO3P, is in a distorted tetra­hedral P(O)(O)2N environment; the bond angles at P are in the range 98.16 (6)–115.82 (6)°. In the crystal, adjacent mol­ecules are linked via N—H⋯O=P hydrogen bonds into a chain running parallel to the b axis. The methyl groups are disordered over two sets of sites in a 0.677 (14):0.323 (14) ratio. The crystal studied was a non-merohedral twin with a refined minor component of 22.31 (4)%.

Related literature  

For bond lengths and angles in a related structure, see: Sabbaghi et al. (2011).graphic file with name e-68-o3459-scheme1.jpg

Experimental  

Crystal data  

  • C15H18NO3P

  • M r = 291.27

  • Monoclinic, Inline graphic

  • a = 8.4432 (5) Å

  • b = 5.3030 (4) Å

  • c = 16.3443 (11) Å

  • β = 90.453 (6)°

  • V = 731.78 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 120 K

  • 0.45 × 0.42 × 0.40 mm

Data collection  

  • Oxford Diffraction Xcalibur (Sapphire2) diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.918, T max = 0.926

  • 6226 measured reflections

  • 6226 independent reflections

  • 6040 reflections with I > 2σ(I)

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.081

  • S = 1.06

  • 6226 reflections

  • 208 parameters

  • 28 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983), 1229 Friedel pairs

  • Flack parameter: 0.05 (6)

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812047940/ff2090sup1.cif

e-68-o3459-sup1.cif (25.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812047940/ff2090Isup2.hkl

e-68-o3459-Isup2.hkl (304.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.81 (1) 2.23 (1) 3.0065 (17) 161 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

Support of this investigation by Zanjan Branch, Islamic Azad University, is gratefully acknowledged.

supplementary crystallographic information

Comment

This work is a continuation of our studies of phosphoramidate compounds, during which the structures of various diphenyl amido phosphates, for example [C6H5O]2P(O)[NHCH(C2H5)(C6H5)] (Sabbaghi et al., 2011) were reported. Here, we report the synthesis and crystal structure determination of the title compound, [C6H5O]2P(O)[NHCH(CH3)2].

The P═O (1.4602 (11) Å), P—O (1.5858 (11) and 1.5896 (11) Å) and P—N (1.6043 (14) Å) bond lengths are within the expected values (Sabbaghi et al., 2011).

The P atom adopts a distorted tetrahedral configuration (Fig. 1). The bond angles at the P atom vary in the range 98.16 (6) [O1—P1—O2] to 115.82 (6)° [O3—P1—O2].

The C—O—P bond angles (124.07 (10) [C1—O1—P1] and 121.74 (10)° [C7—O2—P1]) and the C13A—N1—P1 (124.19 (11)°) bond angle are standard for this category of phosphoramidate compounds (Sabbaghi et al., 2011).

In the crystal structure, molecules are linked via N—H···O═P hydrogen bonds into extended chains running parallel to the b axis (Table 1).

Experimental

To a solution of [C6H5O]2P(O)Cl (2 mmol) in dry CH3CN (30 ml), a solution of isopropylamine (4 mmol) in the same solvent (5 ml) was added at ice bath temperature under stirring. After 4 h, the solvent was removed and the product was washed with distilled water and recrystallized from CH3CN/n-C6H14 (4:1) at room temperature. The single crystals suitable for X-ray analysis were obtained from this solution after a few days at room temperature.

Refinement

The crystal sample was non-merohedrally twinned. Using data reduction software, a HKLF 5 file was produced for a two-component twin and used in the refinement. The fractional contribution of the minor twin component converged to 0.2231 (4). All carbon bound H atoms were placed at calculated positions and were refined as riding with their Uiso set to either 1.2Ueq or 1.5Ueq (methyl) of the respective carrier atoms; in addition, the methyl H atoms were allowed to rotate about the C—C bond. Nitrogen bound H atom was located in a difference Fourier map and its position was refined while the N—H distance was fixed at 0.88 Å and the Uiso set to 1.2Ueq of N1. The disordered methyl groups were modeled over two sites while restraining their anisotropic displacement parameters to be approximately isotropic (ISOR). To maintain a correct hydrogen geometry, a dummy atom with zero occupancy was created and constrained to share the same site (EXYZ) and anisotropic displacement parameters (EADP) with a fully occupied carbon atom bound to N1.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with ellipsoids shown at the 50% probability level and H atoms are drawn as small spheres of arbitrary radii. The minor component of disordered part has been omitted for clarity and only one orientation is shown for the disordered part.

Crystal data

C15H18NO3P F(000) = 308
Mr = 291.27 Dx = 1.322 Mg m3
Monoclinic, Pn Mo Kα radiation, λ = 0.71073 Å
a = 8.4432 (5) Å Cell parameters from 3821 reflections
b = 5.3030 (4) Å θ = 3.4–27.5°
c = 16.3443 (11) Å µ = 0.19 mm1
β = 90.453 (6)° T = 120 K
V = 731.78 (9) Å3 Block, colourless
Z = 2 0.45 × 0.42 × 0.40 mm

Data collection

Oxford Diffraction Xcalibur (Sapphire2) diffractometer 6226 independent reflections
Radiation source: Enhance (Mo) X-ray Source 6040 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.000
Detector resolution: 8.4353 pixels mm-1 θmax = 25.0°, θmin = 3.8°
ω scan h = −10→10
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) k = −6→6
Tmin = 0.918, Tmax = 0.926 l = −19→19
6226 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0626P)2 + 0.0183P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
6226 reflections Δρmax = 0.17 e Å3
208 parameters Δρmin = −0.18 e Å3
28 restraints Absolute structure: Flack (1983), 1229 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.05 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
P1 0.49359 (4) 0.20465 (6) 0.51025 (3) 0.01893 (9)
O1 0.46890 (12) 0.20756 (19) 0.41396 (6) 0.0229 (3)
O2 0.32869 (12) 0.3259 (2) 0.53519 (6) 0.0213 (2)
O3 0.52704 (12) −0.04455 (19) 0.54422 (6) 0.0247 (3)
N1 0.62616 (15) 0.4126 (2) 0.53057 (8) 0.0201 (3)
H1N 0.603 (2) 0.559 (3) 0.5224 (10) 0.024*
C1 0.33996 (19) 0.0959 (3) 0.37348 (10) 0.0241 (4)
C2 0.2687 (2) −0.1207 (3) 0.40086 (13) 0.0346 (4)
H2 0.3036 −0.2017 0.4496 0.042*
C3 0.1433 (2) −0.2176 (3) 0.35464 (15) 0.0454 (6)
H3 0.0915 −0.3663 0.3727 0.054*
C4 0.0931 (2) −0.1044 (4) 0.28402 (14) 0.0489 (6)
H4 0.0066 −0.1725 0.2537 0.059*
C5 0.1686 (2) 0.1079 (4) 0.25735 (13) 0.0440 (5)
H5 0.1359 0.1848 0.2075 0.053*
C6 0.2921 (2) 0.2121 (3) 0.30207 (11) 0.0307 (4)
H6 0.3430 0.3614 0.2838 0.037*
C7 0.27851 (18) 0.3331 (3) 0.61695 (10) 0.0197 (4)
C8 0.31935 (19) 0.5376 (3) 0.66473 (9) 0.0244 (4)
H8 0.3868 0.6656 0.6441 0.029*
C9 0.2607 (2) 0.5528 (3) 0.74285 (10) 0.0319 (4)
H9 0.2874 0.6928 0.7765 0.038*
C10 0.1630 (2) 0.3656 (4) 0.77258 (11) 0.0376 (5)
H10 0.1232 0.3763 0.8267 0.045*
C11 0.1238 (2) 0.1643 (3) 0.72383 (12) 0.0360 (5)
H11 0.0562 0.0361 0.7443 0.043*
C12 0.1817 (2) 0.1460 (3) 0.64507 (12) 0.0306 (4)
H12 0.1547 0.0065 0.6113 0.037*
C13A 0.79551 (19) 0.3558 (3) 0.54259 (10) 0.0212 (4)
H13A 0.8017 0.1911 0.5722 0.025* 0.323 (14)
C14A 0.8579 (13) 0.557 (2) 0.6011 (9) 0.042 (3) 0.323 (14)
H14A 0.8401 0.7242 0.5773 0.064* 0.323 (14)
H14B 0.9716 0.5312 0.6104 0.064* 0.323 (14)
H14C 0.8021 0.5444 0.6533 0.064* 0.323 (14)
C15A 0.8791 (19) 0.324 (3) 0.4671 (9) 0.037 (3) 0.323 (14)
H15A 0.8307 0.1869 0.4355 0.056* 0.323 (14)
H15B 0.9902 0.2833 0.4788 0.056* 0.323 (14)
H15C 0.8736 0.4808 0.4354 0.056* 0.323 (14)
C13B 0.79551 (19) 0.3558 (3) 0.54259 (10) 0.0212 (4) 0.00
H13B 0.8085 0.2301 0.5878 0.025* 0.677 (14)
C14B 0.8824 (4) 0.5997 (8) 0.5652 (4) 0.0306 (11) 0.677 (14)
H14D 0.8633 0.7267 0.5227 0.046* 0.677 (14)
H14E 0.9963 0.5662 0.5696 0.046* 0.677 (14)
H14F 0.8434 0.6622 0.6177 0.046* 0.677 (14)
C15B 0.8680 (8) 0.2476 (13) 0.4620 (4) 0.0298 (11) 0.677 (14)
H15D 0.8160 0.0877 0.4482 0.045* 0.677 (14)
H15E 0.9818 0.2188 0.4701 0.045* 0.677 (14)
H15F 0.8517 0.3683 0.4174 0.045* 0.677 (14)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.01606 (19) 0.01911 (19) 0.02163 (19) 0.00093 (19) 0.00011 (14) 0.0017 (2)
O1 0.0195 (6) 0.0253 (6) 0.0238 (6) −0.0048 (5) −0.0003 (5) −0.0003 (5)
O2 0.0173 (6) 0.0247 (6) 0.0218 (6) 0.0019 (5) −0.0019 (4) 0.0017 (5)
O3 0.0239 (6) 0.0191 (6) 0.0313 (6) 0.0014 (4) 0.0029 (5) 0.0024 (5)
N1 0.0184 (7) 0.0154 (7) 0.0265 (8) 0.0024 (5) −0.0008 (5) 0.0027 (6)
C1 0.0155 (8) 0.0276 (9) 0.0291 (10) −0.0002 (7) 0.0017 (7) −0.0118 (7)
C2 0.0318 (11) 0.0258 (9) 0.0462 (12) −0.0045 (8) −0.0004 (8) −0.0038 (9)
C3 0.0349 (12) 0.0286 (11) 0.0727 (17) −0.0092 (9) 0.0004 (11) −0.0148 (11)
C4 0.0245 (11) 0.0615 (14) 0.0604 (15) −0.0062 (10) −0.0054 (10) −0.0292 (11)
C5 0.0239 (11) 0.0722 (16) 0.0359 (12) 0.0046 (10) −0.0064 (8) −0.0101 (11)
C6 0.0207 (10) 0.0402 (11) 0.0313 (10) 0.0021 (8) 0.0023 (8) −0.0036 (9)
C7 0.0137 (9) 0.0204 (8) 0.0251 (9) 0.0058 (6) 0.0003 (7) 0.0059 (7)
C8 0.0262 (10) 0.0223 (8) 0.0248 (9) −0.0025 (7) −0.0027 (7) 0.0031 (7)
C9 0.0431 (12) 0.0242 (10) 0.0284 (10) 0.0084 (9) −0.0014 (8) 0.0006 (8)
C10 0.0368 (12) 0.0450 (12) 0.0312 (10) 0.0186 (9) 0.0138 (9) 0.0091 (9)
C11 0.0289 (11) 0.0336 (11) 0.0457 (13) 0.0015 (8) 0.0162 (9) 0.0143 (9)
C12 0.0237 (10) 0.0255 (9) 0.0427 (11) 0.0001 (7) 0.0052 (8) 0.0003 (8)
C13A 0.0166 (9) 0.0217 (8) 0.0253 (9) 0.0034 (6) −0.0049 (7) 0.0023 (7)
C14A 0.033 (4) 0.043 (4) 0.051 (4) 0.008 (3) −0.019 (3) −0.007 (3)
C15A 0.030 (4) 0.038 (5) 0.043 (4) 0.010 (4) −0.006 (3) −0.011 (4)
C13B 0.0166 (9) 0.0217 (8) 0.0253 (9) 0.0034 (6) −0.0049 (7) 0.0023 (7)
C14B 0.0200 (15) 0.0309 (18) 0.041 (2) 0.0000 (12) −0.0056 (15) −0.0077 (16)
C15B 0.0230 (18) 0.035 (3) 0.0317 (19) −0.0010 (19) 0.0069 (14) −0.007 (2)

Geometric parameters (Å, º)

P1—O3 1.4602 (11) C9—C10 1.381 (3)
P1—O1 1.5858 (11) C9—H9 0.9500
P1—O2 1.5896 (11) C10—C11 1.371 (3)
P1—N1 1.6043 (14) C10—H10 0.9500
O1—C1 1.4008 (19) C11—C12 1.384 (2)
O2—C7 1.4057 (17) C11—H11 0.9500
N1—C13A 1.4728 (19) C12—H12 0.9500
N1—H1N 0.811 (13) C13A—C15A 1.436 (15)
C1—C2 1.373 (2) C13A—C14A 1.524 (8)
C1—C6 1.378 (2) C13A—H13A 1.0000
C2—C3 1.393 (3) C14A—H14A 0.9800
C2—H2 0.9500 C14A—H14B 0.9800
C3—C4 1.366 (3) C14A—H14C 0.9800
C3—H3 0.9500 C15A—H15A 0.9800
C4—C5 1.367 (3) C15A—H15B 0.9800
C4—H4 0.9500 C15A—H15C 0.9800
C5—C6 1.383 (3) C14B—H14D 0.9800
C5—H5 0.9500 C14B—H14E 0.9800
C6—H6 0.9500 C14B—H14F 0.9800
C7—C12 1.367 (2) C15B—H15D 0.9800
C7—C8 1.379 (2) C15B—H15E 0.9800
C8—C9 1.376 (2) C15B—H15F 0.9800
C8—H8 0.9500
O3—P1—O1 114.19 (6) C12—C7—O2 119.04 (14)
O3—P1—O2 115.82 (6) C8—C7—O2 118.95 (13)
O1—P1—O2 98.16 (6) C9—C8—C7 118.79 (15)
O3—P1—N1 114.26 (7) C9—C8—H8 120.6
O1—P1—N1 106.55 (6) C7—C8—H8 120.6
O2—P1—N1 106.26 (6) C8—C9—C10 120.31 (17)
C1—O1—P1 124.07 (10) C8—C9—H9 119.8
C7—O2—P1 121.74 (10) C10—C9—H9 119.8
C13A—N1—P1 124.19 (11) C11—C10—C9 119.82 (16)
C13A—N1—H1N 116.9 (13) C11—C10—H10 120.1
P1—N1—H1N 117.1 (13) C9—C10—H10 120.1
C2—C1—C6 121.57 (16) C10—C11—C12 120.63 (15)
C2—C1—O1 122.74 (15) C10—C11—H11 119.7
C6—C1—O1 115.65 (14) C12—C11—H11 119.7
C1—C2—C3 117.70 (19) C7—C12—C11 118.59 (17)
C1—C2—H2 121.2 C7—C12—H12 120.7
C3—C2—H2 121.2 C11—C12—H12 120.7
C4—C3—C2 121.69 (19) C15A—C13A—N1 113.1 (7)
C4—C3—H3 119.2 C15A—C13A—C14A 116.8 (6)
C2—C3—H3 119.2 N1—C13A—C14A 105.7 (4)
C3—C4—C5 119.3 (2) C15A—C13A—H13A 106.9
C3—C4—H4 120.4 N1—C13A—H13A 106.9
C5—C4—H4 120.4 C14A—C13A—H13A 106.9
C4—C5—C6 120.8 (2) H14D—C14B—H14E 109.5
C4—C5—H5 119.6 H14D—C14B—H14F 109.5
C6—C5—H5 119.6 H14E—C14B—H14F 109.5
C1—C6—C5 118.93 (17) H15D—C15B—H15E 109.5
C1—C6—H6 120.5 H15D—C15B—H15F 109.5
C5—C6—H6 120.5 H15E—C15B—H15F 109.5
C12—C7—C8 121.86 (15)
O3—P1—O1—C1 67.82 (12) C2—C1—C6—C5 0.3 (3)
O2—P1—O1—C1 −55.32 (12) O1—C1—C6—C5 177.98 (15)
N1—P1—O1—C1 −165.06 (11) C4—C5—C6—C1 1.1 (3)
O3—P1—O2—C7 48.50 (13) P1—O2—C7—C12 −95.01 (17)
O1—P1—O2—C7 170.46 (11) P1—O2—C7—C8 89.47 (14)
N1—P1—O2—C7 −79.57 (12) C12—C7—C8—C9 0.0 (2)
O3—P1—N1—C13A 30.26 (15) O2—C7—C8—C9 175.40 (15)
O1—P1—N1—C13A −96.81 (13) C7—C8—C9—C10 0.2 (3)
O2—P1—N1—C13A 159.24 (12) C8—C9—C10—C11 −0.4 (3)
P1—O1—C1—C2 −33.7 (2) C9—C10—C11—C12 0.3 (3)
P1—O1—C1—C6 148.68 (12) C8—C7—C12—C11 −0.1 (3)
C6—C1—C2—C3 −1.2 (3) O2—C7—C12—C11 −175.45 (15)
O1—C1—C2—C3 −178.68 (16) C10—C11—C12—C7 −0.1 (3)
C1—C2—C3—C4 0.7 (3) P1—N1—C13A—C15A 80.0 (6)
C2—C3—C4—C5 0.7 (3) P1—N1—C13A—C14A −150.9 (7)
C3—C4—C5—C6 −1.7 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O3i 0.81 (1) 2.23 (1) 3.0065 (17) 161 (2)

Symmetry code: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2090).

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  4. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  5. Sabbaghi, F., Pourayoubi, M., Negari, M. & Nečas, M. (2011). Acta Cryst. E67, o2512. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812047940/ff2090sup1.cif

e-68-o3459-sup1.cif (25.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812047940/ff2090Isup2.hkl

e-68-o3459-Isup2.hkl (304.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES