Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 28;68(Pt 12):o3470. doi: 10.1107/S1600536812047897

2,2′-[4-Acetyl-1,3-phenyl­enebis(­oxy)]diacetic acid

Jian-Guo Wang a,*, Ping Yan a, Chan-juan Zhong a, Guo-zhen Yu a
PMCID: PMC3589043  PMID: 23476279

Abstract

In the title compound, C12H12O7, the dihedral angles between the benzene ring and the mean planes of the 3-carb­oxy­meth­oxy, 1-carb­oxy­meth­oxy and acetyl substituents are 8.67 (7), 7.81 (6) and 10.3 (18)°, respectively. In the crystal, mol­ecules are linked by typical carb­oxy­lic acid O—H⋯O hydrogen bonds, forming a zigzag chain. C—H⋯O inter­actions also occur.

Related literature  

For a related structure, see: Zhang et al. (2007).graphic file with name e-68-o3470-scheme1.jpg

Experimental  

Crystal data  

  • C12H12O7

  • M r = 268.22

  • Triclinic, Inline graphic

  • a = 5.1351 (6) Å

  • b = 7.8346 (9) Å

  • c = 15.6157 (18) Å

  • α = 86.217 (2)°

  • β = 81.321 (1)°

  • γ = 72.101 (2)°

  • V = 590.86 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 298 K

  • 0.12 × 0.10 × 0.10 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.985, T max = 0.987

  • 3902 measured reflections

  • 2049 independent reflections

  • 1860 reflections with I > 2σ(I)

  • R int = 0.016

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.120

  • S = 1.05

  • 2049 reflections

  • 176 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004; data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812047897/go2075sup1.cif

e-68-o3470-sup1.cif (20.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812047897/go2075Isup2.hkl

e-68-o3470-Isup2.hkl (100.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812047897/go2075Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.83 2.6530 (14) 180
O6—H6⋯O5ii 0.82 1.83 2.6352 (15) 167
C2—H2⋯O7iii 0.93 2.44 3.3566 (17) 168
C4—H4⋯O6iv 0.93 2.52 3.4392 (19) 169

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This study was funded by Jiangxi Provincial Department of Education (GJJ08433) and the Doctoral Research Initiating Project of Jiujiang University.

supplementary crystallographic information

Comment

The title compound is a potential inhibitor of mushroom tyrosinase.

The dihedral angles between the mean planes of the benzene ring and those of the 2-carboxymethoxyl,(O1-C8-C7-O3-O2), 4-carboxymethoxyl (O6-C10-C9-O4-O5), and acetyl, (C11-C12-O7), substituents are 8.67 (7)°, 7.81 (6)°, and 10.3 (18)° respectively.

In the crystal, the molecules are linked by typical carboxylic acid O—H···O hydrogen bonding forming a one-dimensional zig-zag chain Table 1, Figure 2.

This chain is linked to anti-parallel chains by C—H···O weak hydrogen bonds to form a two dimensional sheet stabilizing the supramolecular structure, Table 1, Figure 2.

Experimental

2,4-dihydroxyacetophenone (10.64 g, 0.07 mol) and potassium hydroxide (10.58 g, 0.189 mol) were dissolved in dry acetone (100 ml) in a three-neck flask. Then ethyl bromoacetate (28.06 g, 0.168 mol) was dropwise added at room temperature and vigorously stirred for 3 h. The progress of the reaction was monitored by TCL (Si gel, developing solvent V (acetone) /V (petroleum ether) = 1:2). After suction filtration and distillation to remove the solvent, a white solid was obtained, 19.76 g, yield 87.1%. This solid was dissolved in acetone (30 ml) and 20% aq. NaOH (50 ml) was added. The reaction mixture was stirred at 323 K for 1.5 h. After acidifying the misxture with dilute hydrochloric acid to pH=3, followed by suction filtrationand washing the residue with water, the target product was prepared. After recrystallization from ethanol, crystalline colorless needles were obtained.

Refinement

All the carbon-bounded hydrogen atoms were located at their ideal positions with the C—H=0.93 Å, C—H=0.96 Å, C—H=0.97 Å and Uiso(H)=1.2Ueq(C). All the hydrogen atoms bonded to the oxygen atoms were located from the difference maps and refined with the restraints of O—H=0.82 (1) Å and Uiso(H)=1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The crystal packing for (I), with hydrogen bonds shown as dashed lines. Hydrogen atoms not involved in the hydrogen bonding have been omitted.

Crystal data

C12H12O7 Z = 2
Mr = 268.22 F(000) = 280
Triclinic, P1 Dx = 1.508 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.1351 (6) Å Cell parameters from 3359 reflections
b = 7.8346 (9) Å θ = 2.6–31.8°
c = 15.6157 (18) Å µ = 0.13 mm1
α = 86.217 (2)° T = 298 K
β = 81.321 (1)° Block, colourless
γ = 72.101 (2)° 0.12 × 0.10 × 0.10 mm
V = 590.86 (12) Å3

Data collection

Bruker APEXII CCD diffractometer 2049 independent reflections
Radiation source: fine-focus sealed tube 1860 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.016
φ and ω scans θmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −6→6
Tmin = 0.985, Tmax = 0.987 k = −9→9
3902 measured reflections l = −18→18

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0795P)2 + 0.1078P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
2049 reflections Δρmax = 0.24 e Å3
176 parameters Δρmin = −0.23 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.036 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.9386 (3) 0.64900 (17) 0.22991 (8) 0.0282 (3)
C2 0.6877 (3) 0.75023 (17) 0.27294 (9) 0.0291 (3)
H2 0.6254 0.8735 0.2630 0.035*
C3 0.5297 (3) 0.66705 (18) 0.33088 (9) 0.0290 (3)
C4 0.6221 (3) 0.48246 (18) 0.34697 (9) 0.0332 (3)
H4 0.5166 0.4266 0.3858 0.040*
C5 0.8736 (3) 0.38464 (17) 0.30388 (9) 0.0329 (3)
H5 0.9361 0.2618 0.3152 0.040*
C6 1.0383 (3) 0.46109 (17) 0.24430 (9) 0.0299 (3)
C7 1.0249 (3) 0.90973 (18) 0.15901 (10) 0.0349 (3)
H7A 1.0211 0.9696 0.2118 0.042*
H7B 0.8424 0.9519 0.1412 0.042*
C8 1.2360 (3) 0.94824 (18) 0.08886 (9) 0.0329 (3)
C9 0.1228 (3) 0.70250 (18) 0.43152 (9) 0.0323 (3)
H9A 0.2214 0.6572 0.4806 0.039*
H9B 0.0869 0.6029 0.4068 0.039*
C10 −0.1449 (3) 0.84177 (18) 0.46089 (9) 0.0321 (3)
C11 1.3024 (3) 0.33765 (19) 0.20074 (10) 0.0363 (3)
C12 1.4694 (4) 0.3989 (2) 0.12491 (12) 0.0524 (5)
H12A 1.6153 0.2977 0.1007 0.079*
H12B 1.5473 0.4845 0.1436 0.079*
H12C 1.3527 0.4537 0.0818 0.079*
O1 1.1504 (2) 1.10815 (14) 0.05426 (8) 0.0472 (3)
H1 1.2707 1.1235 0.0164 0.071*
O2 1.4614 (2) 0.84065 (14) 0.06836 (7) 0.0463 (3)
O3 1.1036 (2) 0.72247 (13) 0.17277 (7) 0.0406 (3)
O4 0.28549 (19) 0.77925 (13) 0.36867 (7) 0.0369 (3)
O5 −0.2075 (2) 0.99593 (13) 0.43053 (7) 0.0421 (3)
O6 −0.2994 (2) 0.78060 (14) 0.51955 (8) 0.0487 (3)
H6 −0.4400 0.8616 0.5357 0.073*
O7 1.3789 (3) 0.18327 (14) 0.22649 (9) 0.0579 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0251 (6) 0.0269 (6) 0.0304 (6) −0.0088 (5) 0.0037 (5) 0.0021 (5)
C2 0.0258 (7) 0.0232 (6) 0.0344 (7) −0.0059 (5) 0.0025 (5) 0.0039 (5)
C3 0.0231 (6) 0.0288 (7) 0.0317 (7) −0.0059 (5) 0.0019 (5) 0.0009 (5)
C4 0.0300 (7) 0.0300 (7) 0.0372 (7) −0.0111 (5) 0.0041 (6) 0.0061 (5)
C5 0.0315 (7) 0.0233 (6) 0.0408 (8) −0.0071 (5) 0.0005 (6) 0.0034 (5)
C6 0.0279 (7) 0.0247 (7) 0.0344 (7) −0.0065 (6) 0.0003 (5) −0.0003 (5)
C7 0.0299 (7) 0.0264 (7) 0.0420 (8) −0.0064 (5) 0.0089 (6) 0.0039 (6)
C8 0.0306 (7) 0.0283 (7) 0.0375 (7) −0.0101 (6) 0.0031 (6) 0.0028 (5)
C9 0.0266 (7) 0.0322 (7) 0.0342 (7) −0.0087 (6) 0.0057 (5) 0.0036 (6)
C10 0.0292 (7) 0.0322 (7) 0.0328 (7) −0.0105 (6) 0.0051 (5) −0.0010 (5)
C11 0.0314 (7) 0.0283 (7) 0.0448 (8) −0.0061 (6) 0.0033 (6) −0.0045 (6)
C12 0.0432 (9) 0.0373 (8) 0.0602 (10) −0.0011 (7) 0.0226 (8) −0.0061 (7)
O1 0.0391 (6) 0.0365 (6) 0.0568 (7) −0.0098 (5) 0.0118 (5) 0.0142 (5)
O2 0.0342 (6) 0.0394 (6) 0.0540 (7) −0.0066 (5) 0.0142 (5) 0.0094 (5)
O3 0.0337 (6) 0.0259 (5) 0.0518 (6) −0.0064 (4) 0.0185 (4) 0.0047 (4)
O4 0.0270 (5) 0.0298 (5) 0.0446 (6) −0.0047 (4) 0.0126 (4) 0.0052 (4)
O5 0.0344 (6) 0.0333 (6) 0.0508 (6) −0.0076 (4) 0.0102 (5) 0.0047 (4)
O6 0.0371 (6) 0.0384 (6) 0.0574 (7) −0.0071 (5) 0.0228 (5) 0.0052 (5)
O7 0.0491 (7) 0.0285 (6) 0.0774 (9) 0.0037 (5) 0.0135 (6) 0.0050 (5)

Geometric parameters (Å, º)

C1—O3 1.3596 (16) C8—O2 1.2154 (18)
C1—C2 1.3862 (19) C8—O1 1.3033 (17)
C1—C6 1.4170 (18) C9—O4 1.4166 (15)
C2—C3 1.3884 (18) C9—C10 1.4979 (19)
C2—H2 0.9300 C9—H9A 0.9700
C3—O4 1.3642 (17) C9—H9B 0.9700
C3—C4 1.3949 (19) C10—O5 1.2323 (17)
C4—C5 1.381 (2) C10—O6 1.2863 (17)
C4—H4 0.9300 C11—O7 1.2126 (18)
C5—C6 1.3927 (19) C11—C12 1.496 (2)
C5—H5 0.9300 C12—H12A 0.9600
C6—C11 1.4966 (19) C12—H12B 0.9600
C7—O3 1.4079 (16) C12—H12C 0.9600
C7—C8 1.5050 (18) O1—H1 0.8200
C7—H7A 0.9700 O6—H6 0.8200
C7—H7B 0.9700
O3—C1—C2 122.68 (11) O2—C8—C7 122.72 (12)
O3—C1—C6 116.25 (11) O1—C8—C7 112.58 (12)
C2—C1—C6 121.06 (12) O4—C9—C10 109.47 (11)
C1—C2—C3 119.83 (11) O4—C9—H9A 109.8
C1—C2—H2 120.1 C10—C9—H9A 109.8
C3—C2—H2 120.1 O4—C9—H9B 109.8
O4—C3—C2 114.79 (11) C10—C9—H9B 109.8
O4—C3—C4 124.56 (12) H9A—C9—H9B 108.2
C2—C3—C4 120.65 (12) O5—C10—O6 124.81 (13)
C5—C4—C3 118.49 (12) O5—C10—C9 122.91 (12)
C5—C4—H4 120.8 O6—C10—C9 112.28 (11)
C3—C4—H4 120.8 O7—C11—C12 119.44 (13)
C4—C5—C6 123.14 (12) O7—C11—C6 118.94 (13)
C4—C5—H5 118.4 C12—C11—C6 121.60 (12)
C6—C5—H5 118.4 C11—C12—H12A 109.5
C5—C6—C1 116.82 (12) C11—C12—H12B 109.5
C5—C6—C11 117.25 (11) H12A—C12—H12B 109.5
C1—C6—C11 125.93 (12) C11—C12—H12C 109.5
O3—C7—C8 106.80 (11) H12A—C12—H12C 109.5
O3—C7—H7A 110.4 H12B—C12—H12C 109.5
C8—C7—H7A 110.4 C8—O1—H1 109.5
O3—C7—H7B 110.4 C1—O3—C7 119.30 (10)
C8—C7—H7B 110.4 C3—O4—C9 117.02 (10)
H7A—C7—H7B 108.6 C10—O6—H6 109.5
O2—C8—O1 124.70 (13)
O3—C1—C2—C3 −179.66 (12) O3—C7—C8—O1 163.06 (12)
C6—C1—C2—C3 −0.3 (2) O4—C9—C10—O5 2.36 (19)
C1—C2—C3—O4 −179.26 (11) O4—C9—C10—O6 −178.61 (11)
C1—C2—C3—C4 0.6 (2) C5—C6—C11—O7 −9.3 (2)
O4—C3—C4—C5 179.78 (12) C1—C6—C11—O7 171.32 (14)
C2—C3—C4—C5 −0.1 (2) C5—C6—C11—C12 168.98 (14)
C3—C4—C5—C6 −0.8 (2) C1—C6—C11—C12 −10.4 (2)
C4—C5—C6—C1 1.1 (2) C2—C1—O3—C7 2.9 (2)
C4—C5—C6—C11 −178.34 (13) C6—C1—O3—C7 −176.45 (12)
O3—C1—C6—C5 178.87 (12) C8—C7—O3—C1 −176.25 (11)
C2—C1—C6—C5 −0.52 (19) C2—C3—O4—C9 −176.96 (11)
O3—C1—C6—C11 −1.8 (2) C4—C3—O4—C9 3.1 (2)
C2—C1—C6—C11 178.85 (12) C10—C9—O4—C3 −175.88 (11)
O3—C7—C8—O2 −17.6 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2i 0.82 1.83 2.6530 (14) 180
O6—H6···O5ii 0.82 1.83 2.6352 (15) 167
C2—H2···O7iii 0.93 2.44 3.3566 (17) 168
C4—H4···O6iv 0.93 2.52 3.4392 (19) 169

Symmetry codes: (i) −x+3, −y+2, −z; (ii) −x−1, −y+2, −z+1; (iii) x−1, y+1, z; (iv) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GO2075).

References

  1. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  5. Zhang, C., Li, H., Liu, D. & Liu, M. (2007). Acta Cryst. E63, o4210.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812047897/go2075sup1.cif

e-68-o3470-sup1.cif (20.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812047897/go2075Isup2.hkl

e-68-o3470-Isup2.hkl (100.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812047897/go2075Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES