Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Nov 30;68(Pt 12):o3488. doi: 10.1107/S160053681204812X

rac-Eth­yl(phen­yl)phosphinic acid

Robert A Burrow a,*, Rubia M Siqueira da Silva a
PMCID: PMC3589060  PMID: 23476296

Abstract

The crystal structure of the title compound, C8H11O2P, features O—H⋯O hydrogen bonds, which link mol­ecules related by the b-glide plane into chains along [010].

Related literature  

For background to metal-organic frameworks involving phospho­nate ligands, see: Gagnon et al. (2012). For details of coordination polymers constructed using phosphinic acids as the spacer ligand, see: Siqueira et al. (2006); Beckmann et al. (2009). For further details of phosphinic acids and the crystal structures of similar compounds, see: Burrow et al. (2000); Burrow & Siqueira da Silva (2011a ,b ). For a description of the Cambridge Structural Database, see: Allen (2002). For geometry analysis using Mogul, see: Bruno et al. (2004).graphic file with name e-68-o3488-scheme1.jpg

Experimental  

Crystal data  

  • C8H11O2P

  • M r = 170.14

  • Orthorhombic, Inline graphic

  • a = 13.5314 (16) Å

  • b = 8.0328 (9) Å

  • c = 15.922 (2) Å

  • V = 1730.6 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 296 K

  • 0.41 × 0.12 × 0.11 mm

Data collection  

  • Bruker X8 Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012) T min = 0.906, T max = 0.971

  • 14069 measured reflections

  • 2650 independent reflections

  • 1499 reflections with I > 2σ(I)

  • R int = 0.054

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.128

  • S = 1.09

  • 2650 reflections

  • 104 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681204812X/su2532sup1.cif

e-68-o3488-sup1.cif (18.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681204812X/su2532Isup2.hkl

e-68-o3488-Isup2.hkl (130.2KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681204812X/su2532Isup3.cdx

Supplementary material file. DOI: 10.1107/S160053681204812X/su2532Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.87 (2) 1.64 (2) 2.4931 (19) 168 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

Financial support from the Conselho Nacional de Desenvolvimento Científico (CNPq, Brazil; grant 479747/2009–1) and the Fundação de Amparo à Pesquisa (FAPERGS, Rio Grande do Sul; grant 10/1645–9) is gratefully acknowledged, as are fellowships from CNPq (RAB; grant 308731/2009–3) and the Coordenação de Aperfeiçoamento de Pessoas de Nível Superior (CAPES, Brazil; RMSS). The diffractometer was funded by a CT-INFRA grant from the Financiadora de Estrutos e Projetos (FINEP, Brazil).

supplementary crystallographic information

Comment

Coordination polymers are the basis of metal-organic frameworks usually based on carboxylate ligands or phosphonate ligands (Gagnon et al., 2012). Coordination polymers have also been constructed using phosphinic acids as the spacer ligand (Siqueira et al., 2006; Beckmann et al., 2009). Continuing our research on phosphinic acids (Burrow et al., 2000; Burrow & Siqueira da Silva, 2011a,b), we report herein on the synthesis and crystal structure of the title compound.

The title compound, Fig. 1, is found to crystallize as a racemic mixture of enantiomers in the centrosymmetric space group Pbcn. An analysis of the geometry with Mogul [Bruno et al., 2004] using the Cambridge Structural Database [CSD; Allen, 2002] showed a slightly wider C—P—C angle [110.87 (9) °] than average [mean = 106.0(2.2)° of 15 observations] with |z-score| = 2.178. The P—O distance, though not unusual at 1.5529 (14) Å, is slightly longer than average value [mean 1.542 (22) Å of 17 observations] and is similar to that in methyl(phenyl)phosphinic acid [1.5526 (16) Å; Burrow & Siqueira da Silva, 2011b].

In the crystal, hydrogen bonding interactions (Table 1 and Fig. 2) of the type OH···O=P—OH···O=P join molecules related by the b glide plane into continuous chains along [010]. The short P—O···O=P distance of 2.4931 (19) Å indicates a strong hydrogen bond. This is slightly shorter than the average O···O interaction distance in the CSD [2.51 (5) Å of 60 observations] for other phosphinic acids, but is equal that for methyl(phenyl)phosphinic acid, 2.4838 (18) Å [Burrow & Siqueira da Silva, 2011b].

The crystal packing diagram, Fig. 2, shows that the hydrogen bonded chains of the title compound form columns in the crystallographic b direction, with the chains alternating direction in the other two dimensions. There are no phenyl-phenyl interactions.

Experimental

To a solution of phenylphosphinic acid (2.0 g, 14.1 mmol) in dichloromethane, diisopropylethylamine (5.16 ml, 29.6 mmol) and trimethylsilyl chloride (3.74 ml, 29.6 mmol) were separately added at 273 K under argon. The reaction mixture was stirred at room temperature for 2–3 h, cooled to 273 K and ethyliodide (1.25 ml, 19.6 mmol) was added. After further stirring at room temperature for 48 h, the solvent was removed under vacuum. The residue was suspended in hydrochloric acid (2 M, 20 ml) and filtered on a glass frit. The white solid was washed with acetone and dried giving a yield of 0.84 g (35%) of pure product. Crystals suitable for single-crystal X-ray analysis were grown from an acetone solution in a desiccator with silica gel. Spectroscopic and TGA data for the title compound are available in the archived CIF.

Refinement

The H atom on O1 was located in a difference Fourier map and its position was allowed to refine freely with Uiso(H) = 1.5 Ueq(O). The C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms: C—H = 0.93, 0.97 and 0.97 Å for CH, CH2 and CH3 H atoms, respectively, with = k × Ueq(C), where k = 1.5 for CH3 H atoms and = 1.2 for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom numbering. The displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A perspective view along the a axis of the crystal packing of the title compound. The O-H···O hydrogen bonds are shown as dashed lines.

Crystal data

C8H11O2P Dx = 1.306 Mg m3
Mr = 170.14 Melting point = 336–341 K
Orthorhombic, Pbcn Mo Kα radiation, λ = 0.71073 Å
a = 13.5314 (16) Å Cell parameters from 2263 reflections
b = 8.0328 (9) Å θ = 2.6–26.5°
c = 15.922 (2) Å µ = 0.27 mm1
V = 1730.6 (4) Å3 T = 296 K
Z = 8 Block, colourless
F(000) = 720 0.41 × 0.12 × 0.11 mm

Data collection

Bruker X8 Kappa APEXII diffractometer 2650 independent reflections
Radiation source: sealed ceramic X ray tube, Siemens KFF 1499 reflections with I > 2σ(I)
Graphite crystal monochromator Rint = 0.054
Detector resolution: 8.3333 pixels mm-1 θmax = 30.5°, θmin = 3.2°
0.5 ° ω & φ scans h = −19→19
Absorption correction: multi-scan (SADABS; Bruker, 2012) k = −9→11
Tmin = 0.906, Tmax = 0.971 l = −18→22
14069 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128 H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0525P)2 + 0.0622P] where P = (Fo2 + 2Fc2)/3
2650 reflections (Δ/σ)max < 0.001
104 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Experimental. Spectroscopic and TGA data for the title compound:IR: 1438 (m), 1177 (versus), 1137 (s), 998 (versus), 935 (versus), 745 (m), 718 (s), 692 (versus), 565 (m), 537 (m), 495 (m) cm-1. TGA: 483 - 603 K; 88% loss.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P1 0.31872 (4) 0.19541 (6) 0.40958 (3) 0.03859 (18)
O1 0.34640 (11) 0.35269 (17) 0.35798 (8) 0.0468 (4)
H1 0.3212 (16) 0.444 (3) 0.3780 (15) 0.07*
O2 0.21554 (10) 0.13429 (17) 0.39751 (8) 0.0496 (4)
C11 0.40682 (16) 0.0441 (3) 0.37446 (13) 0.0539 (5)
H11A 0.4004 −0.0541 0.4095 0.065*
H11B 0.3897 0.012 0.3176 0.065*
C12 0.51433 (18) 0.0978 (3) 0.37521 (16) 0.0740 (7)
H12C 0.5222 0.1953 0.341 0.111*
H12A 0.5547 0.0096 0.3533 0.111*
H12B 0.5341 0.1224 0.4318 0.111*
C21 0.33743 (13) 0.2444 (2) 0.51841 (11) 0.0368 (4)
C22 0.41968 (14) 0.3314 (2) 0.54585 (13) 0.0474 (5)
H22 0.4675 0.3645 0.5073 0.057*
C23 0.43146 (16) 0.3697 (3) 0.62986 (14) 0.0584 (6)
H23 0.4868 0.4286 0.6476 0.07*
C24 0.36130 (17) 0.3207 (3) 0.68740 (14) 0.0579 (6)
H24 0.3694 0.3464 0.7439 0.069*
C25 0.28001 (17) 0.2344 (3) 0.66167 (13) 0.0576 (6)
H25 0.2329 0.2012 0.7008 0.069*
C26 0.26725 (15) 0.1960 (2) 0.57756 (12) 0.0466 (5)
H26 0.2115 0.1374 0.5605 0.056*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.0484 (3) 0.0289 (3) 0.0386 (3) 0.0015 (2) −0.0015 (2) 0.0000 (2)
O1 0.0652 (9) 0.0336 (8) 0.0416 (8) 0.0046 (7) 0.0087 (6) 0.0029 (6)
O2 0.0536 (8) 0.0376 (8) 0.0576 (9) −0.0038 (7) −0.0134 (7) −0.0018 (6)
C11 0.0701 (13) 0.0399 (12) 0.0516 (12) 0.0116 (11) 0.0031 (10) −0.0035 (9)
C12 0.0666 (15) 0.0666 (17) 0.0887 (19) 0.0219 (13) 0.0124 (13) −0.0028 (14)
C21 0.0423 (10) 0.0295 (9) 0.0386 (9) 0.0002 (8) 0.0005 (7) 0.0011 (8)
C22 0.0479 (11) 0.0445 (12) 0.0498 (12) −0.0086 (9) −0.0002 (9) −0.0006 (9)
C23 0.0613 (14) 0.0576 (14) 0.0563 (13) −0.0077 (11) −0.0151 (11) −0.0097 (11)
C24 0.0732 (16) 0.0599 (15) 0.0405 (11) 0.0076 (12) −0.0076 (11) −0.0081 (10)
C25 0.0620 (14) 0.0667 (15) 0.0442 (12) 0.0032 (11) 0.0132 (10) 0.0001 (11)
C26 0.0444 (11) 0.0458 (12) 0.0496 (12) −0.0047 (9) 0.0028 (8) −0.0014 (9)

Geometric parameters (Å, º)

P1—O2 1.4925 (14) C21—C22 1.385 (2)
P1—O1 1.5529 (14) C21—C26 1.393 (3)
P1—C11 1.792 (2) C22—C23 1.382 (3)
P1—C21 1.7950 (19) C22—H22 0.93
O1—H1 0.87 (2) C23—C24 1.377 (3)
C11—C12 1.517 (3) C23—H23 0.93
C11—H11A 0.97 C24—C25 1.363 (3)
C11—H11B 0.97 C24—H24 0.93
C12—H12C 0.96 C25—C26 1.385 (3)
C12—H12A 0.96 C25—H25 0.93
C12—H12B 0.96 C26—H26 0.93
O2—P1—O1 115.16 (8) C22—C21—C26 118.40 (18)
O2—P1—C11 111.05 (10) C22—C21—P1 121.91 (14)
O1—P1—C11 103.08 (9) C26—C21—P1 119.69 (14)
O2—P1—C21 109.17 (8) C23—C22—C21 120.68 (19)
O1—P1—C21 107.36 (8) C23—C22—H22 119.7
C11—P1—C21 110.87 (9) C21—C22—H22 119.7
P1—O1—H1 113.5 (16) C24—C23—C22 120.06 (19)
C12—C11—P1 116.28 (16) C24—C23—H23 120.0
C12—C11—H11A 108.2 C22—C23—H23 120.0
P1—C11—H11A 108.2 C25—C24—C23 120.1 (2)
C12—C11—H11B 108.2 C25—C24—H24 119.9
P1—C11—H11B 108.2 C23—C24—H24 119.9
H11A—C11—H11B 107.4 C24—C25—C26 120.3 (2)
C11—C12—H12C 109.5 C24—C25—H25 119.8
C11—C12—H12A 109.5 C26—C25—H25 119.8
H12C—C12—H12A 109.5 C25—C26—C21 120.43 (19)
C11—C12—H12B 109.5 C25—C26—H26 119.8
H12C—C12—H12B 109.5 C21—C26—H26 119.8
H12A—C12—H12B 109.5
O2—P1—C11—C12 174.11 (16) C26—C21—C22—C23 −0.3 (3)
O1—P1—C11—C12 50.26 (18) P1—C21—C22—C23 179.01 (16)
C21—P1—C11—C12 −64.34 (19) C21—C22—C23—C24 0.3 (3)
O2—P1—C21—C22 −168.19 (15) C22—C23—C24—C25 −0.1 (3)
O1—P1—C21—C22 −42.73 (17) C23—C24—C25—C26 −0.2 (3)
C11—P1—C21—C22 69.16 (18) C24—C25—C26—C21 0.2 (3)
O2—P1—C21—C26 11.07 (18) C22—C21—C26—C25 0.0 (3)
O1—P1—C21—C26 136.53 (16) P1—C21—C26—C25 −179.28 (15)
C11—P1—C21—C26 −111.58 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2i 0.87 (2) 1.64 (2) 2.4931 (19) 168 (2)

Symmetry code: (i) −x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2532).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Beckmann, J., Duthie, A., Rüttinger, R. & Schwich, T. (2009). Z. Anorg. Allg. Chem. 635, 1412–1419.
  3. Brandenburg, K. (2012). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2012). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144. [DOI] [PubMed]
  6. Burrow, R. A., Farrar, D. H., Lough, A. J., Siqueira, M. R. & Squizani, F. (2000). Acta Cryst. C56, e357–e358.
  7. Burrow, R. A. & Siqueira da Silva, R. M. (2011a). Acta Cryst. E67, o1045. [DOI] [PMC free article] [PubMed]
  8. Burrow, R. A. & Siqueira da Silva, R. M. (2011b). Acta Cryst. E67, o2005. [DOI] [PMC free article] [PubMed]
  9. Gagnon, K. J., Perry, H. P. & Clearfield, A. (2012). Coord. Chem. Rev. 112, 1034–1054. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Siqueira, M. R., Tonetto, T. C., Rizzatti, M. R., Lang, E. S., Ellena, J. & Burrow, R. A. (2006). Inorg. Chem. Commun. 9, 537–540.
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681204812X/su2532sup1.cif

e-68-o3488-sup1.cif (18.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681204812X/su2532Isup2.hkl

e-68-o3488-Isup2.hkl (130.2KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681204812X/su2532Isup3.cdx

Supplementary material file. DOI: 10.1107/S160053681204812X/su2532Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES