Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1994 Sep;14(9):5850–5857. doi: 10.1128/mcb.14.9.5850

Different capacities for recombination in closely related human lymphoblastoid cell lines with different mutational responses to X-irradiation.

F Xia 1, S A Amundson 1, J A Nickoloff 1, H L Liber 1
PMCID: PMC359111  PMID: 8065318

Abstract

WIL2-NS and TK6 are two distinct human lymphoblast cell lines derived from a single male donor. WIL2-NS cells are significantly more resistant to the cytotoxic effects of X-irradiation but considerably more sensitive to induced mutation. In an effort to determine the mechanistic basis for these differences, we analyzed the physical structures of thymidine kinase (tk)-deficient mutants isolated after X-ray treatment of tk heterozygotes derived from TK6 and the more mutable WIL2-NS. Southern analysis showed that while 84% of TK6-derived mutants had arisen by loss of heterozygosity (LOH), all 106 mutants from WIL2-NS derivatives arose with LOH at tk and all but one showed LOH at other linked loci on chromosome 17. We adapted a fluorescence in situ hybridization technique to distinguish between LOH due to deletion, which results in retention of only one tk allele, and LOH due to a mechanism involving the homologous chromosome (e.g., recombination), which results in the retention of two alleles. Among the LOH mutants derived that were analyzed in this way, 9 of 26 from WIL2-NS and 11 of 17 from TK6 cell lines arose by deletion. The remaining mutants retained two copies of the tk gene and thus arose by a mechanism involving the homologous allele. Since many of these mutants arising by a homologous mechanism retained partial heterozygosity of chromosome 17, they must have arisen by recombination or gene conversion, and not chromosome loss and reduplication. Finally, the recombinational capacities of WIL2-NS and TK6 were compared in transfection assays with plasmid recombination substrates. Intermolecular recombination frequencies were greater in WIL2-NS than in TK6. These data are consistent with a model suggesting that a recombinational repair system is functioning at a higher level in WIL2-NS than in TK6; the greater mutability of the tk locus in WIL2-NS results from more frequent inter- and intramolecular recombination events.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALEXANDER P. Mouse lymphoma cells with different radiosensitivities. Nature. 1961 Nov 11;192:572–573. doi: 10.1038/192572a0. [DOI] [PubMed] [Google Scholar]
  2. Amundson S. A., Liber H. L. A comparison of induced mutation at homologous alleles of the tk locus in human cells. II. Molecular analysis of mutants. Mutat Res. 1992 May;267(1):89–95. doi: 10.1016/0027-5107(92)90113-g. [DOI] [PubMed] [Google Scholar]
  3. Amundson S. A., Liber H. L. A comparison of induced mutation at homologous alleles of the tk locus in human cells. Mutat Res. 1991 Mar;247(1):19–27. doi: 10.1016/0027-5107(91)90029-n. [DOI] [PubMed] [Google Scholar]
  4. Amundson S. A., Xia F., Wolfson K., Liber H. L. Different cytotoxic and mutagenic responses induced by X-rays in two human lymphoblastoid cell lines derived from a single donor. Mutat Res. 1993 Apr;286(2):233–241. doi: 10.1016/0027-5107(93)90188-l. [DOI] [PubMed] [Google Scholar]
  5. Applegate M. L., Moore M. M., Broder C. B., Burrell A., Juhn G., Kasweck K. L., Lin P. F., Wadhams A., Hozier J. C. Molecular dissection of mutations at the heterozygous thymidine kinase locus in mouse lymphoma cells. Proc Natl Acad Sci U S A. 1990 Jan;87(1):51–55. doi: 10.1073/pnas.87.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Biedermann K. A., Sun J. R., Giaccia A. J., Tosto L. M., Brown J. M. scid mutation in mice confers hypersensitivity to ionizing radiation and a deficiency in DNA double-strand break repair. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1394–1397. doi: 10.1073/pnas.88.4.1394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Blackwell T. K., Malynn B. A., Pollock R. R., Ferrier P., Covey L. R., Fulop G. M., Phillips R. A., Yancopoulos G. D., Alt F. W. Isolation of scid pre-B cells that rearrange kappa light chain genes: formation of normal signal and abnormal coding joins. EMBO J. 1989 Mar;8(3):735–742. doi: 10.1002/j.1460-2075.1989.tb03433.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bollag R. J., Waldman A. S., Liskay R. M. Homologous recombination in mammalian cells. Annu Rev Genet. 1989;23:199–225. doi: 10.1146/annurev.ge.23.120189.001215. [DOI] [PubMed] [Google Scholar]
  9. Brenner D. A., Smigocki A. C., Camerini-Otero R. D. Double-strand gap repair results in homologous recombination in mouse L cells. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1762–1766. doi: 10.1073/pnas.83.6.1762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brenner D. A., Smigocki A. C., Camerini-Otero R. D. Effect of insertions, deletions, and double-strand breaks on homologous recombination in mouse L cells. Mol Cell Biol. 1985 Apr;5(4):684–691. doi: 10.1128/mcb.5.4.684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bubley G. J., Schnipper L. E. Effects of Bloom's syndrome fibroblasts on genetic recombination and mutagenesis of herpes simplex virus type 1. Somat Cell Mol Genet. 1987 Mar;13(2):111–117. doi: 10.1007/BF01534691. [DOI] [PubMed] [Google Scholar]
  12. Chakrabarti S., Seidman M. M. Intramolecular recombination between transfected repeated sequences in mammalian cells is nonconservative. Mol Cell Biol. 1986 Jul;6(7):2520–2526. doi: 10.1128/mcb.6.7.2520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Darroudi F., Natarajan A. T. Cytogenetical characterization of Chinese hamster ovary X-ray-sensitive mutant cells xrs 5 and xrs 6. III. Induction of cell killing, chromosomal aberrations and sister-chromatid exchanges by bleomycin, mono- and bi-functional alkylating agents. Mutat Res. 1989 Jun;212(2):123–135. doi: 10.1016/0027-5107(89)90063-8. [DOI] [PubMed] [Google Scholar]
  14. Deng W. P., Nickoloff J. A. Mismatch repair of heteroduplex DNA intermediates of extrachromosomal recombination in mammalian cells. Mol Cell Biol. 1994 Jan;14(1):400–406. doi: 10.1128/mcb.14.1.400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Evans H. H., Mencl J., Horng M. F., Ricanati M., Sanchez C., Hozier J. Locus specificity in the mutability of L5178Y mouse lymphoma cells: the role of multilocus lesions. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4379–4383. doi: 10.1073/pnas.83.12.4379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  17. Frankenberg-Schwager M. Induction, repair and biological relevance of radiation-induced DNA lesions in eukaryotic cells. Radiat Environ Biophys. 1990;29(4):273–292. doi: 10.1007/BF01210408. [DOI] [PubMed] [Google Scholar]
  18. Fuller L. F., Painter R. B. A Chinese hamster ovary cell line hypersensitive to ionizing radiation and deficient in repair replication. Mutat Res. 1988 Mar;193(2):109–121. doi: 10.1016/0167-8817(88)90041-7. [DOI] [PubMed] [Google Scholar]
  19. Fulop G. M., Phillips R. A. The scid mutation in mice causes a general defect in DNA repair. Nature. 1990 Oct 4;347(6292):479–482. doi: 10.1038/347479a0. [DOI] [PubMed] [Google Scholar]
  20. Giaccia A., Weinstein R., Hu J., Stamato T. D. Cell cycle-dependent repair of double-strand DNA breaks in a gamma-ray-sensitive Chinese hamster cell. Somat Cell Mol Genet. 1985 Sep;11(5):485–491. doi: 10.1007/BF01534842. [DOI] [PubMed] [Google Scholar]
  21. Glaser T., Lewis W. H., Bruns G. A., Watkins P. C., Rogler C. E., Shows T. B., Powers V. E., Willard H. F., Goguen J. M., Simola K. O. The beta-subunit of follicle-stimulating hormone is deleted in patients with aniridia and Wilms' tumour, allowing a further definition of the WAGR locus. 1986 Jun 26-Jul 2Nature. 321(6073):882–887. doi: 10.1038/321882a0. [DOI] [PubMed] [Google Scholar]
  22. Hendrickson E. A., Qin X. Q., Bump E. A., Schatz D. G., Oettinger M., Weaver D. T. A link between double-strand break-related repair and V(D)J recombination: the scid mutation. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4061–4065. doi: 10.1073/pnas.88.10.4061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hozier J., Sawyer J., Clive D., Moore M. M. Chromosome 11 aberrations in small colony L5178Y TK-/- mutants early in their clonal history. Mutat Res. 1985 Oct;147(5):237–242. doi: 10.1016/0165-1161(85)90064-0. [DOI] [PubMed] [Google Scholar]
  24. Hozier J., Sawyer J., Moore M., Howard B., Clive D. Cytogenetic analysis of the L5178Y/TK+/- leads to TK-/- mouse lymphoma mutagenesis assay system. Mutat Res. 1981 Nov;84(1):169–181. doi: 10.1016/0027-5107(81)90060-9. [DOI] [PubMed] [Google Scholar]
  25. Hutchinson F. Chemical changes induced in DNA by ionizing radiation. Prog Nucleic Acid Res Mol Biol. 1985;32:115–154. doi: 10.1016/s0079-6603(08)60347-5. [DOI] [PubMed] [Google Scholar]
  26. Jasin M., de Villiers J., Weber F., Schaffner W. High frequency of homologous recombination in mammalian cells between endogenous and introduced SV40 genomes. Cell. 1985 Dec;43(3 Pt 2):695–703. doi: 10.1016/0092-8674(85)90242-9. [DOI] [PubMed] [Google Scholar]
  27. Jeggo P. A., Kemp L. M. X-ray-sensitive mutants of Chinese hamster ovary cell line. Isolation and cross-sensitivity to other DNA-damaging agents. Mutat Res. 1983 Dec;112(6):313–327. doi: 10.1016/0167-8817(83)90026-3. [DOI] [PubMed] [Google Scholar]
  28. Jones N. J., Cox R., Thacker J. Six complementation groups for ionising-radiation sensitivity in Chinese hamster cells. Mutat Res. 1988 Mar;193(2):139–144. doi: 10.1016/0167-8817(88)90044-2. [DOI] [PubMed] [Google Scholar]
  29. Kemp L. M., Sedgwick S. G., Jeggo P. A. X-ray sensitive mutants of Chinese hamster ovary cells defective in double-strand break rejoining. Mutat Res. 1984 Nov-Dec;132(5-6):189–196. doi: 10.1016/0167-8817(84)90037-3. [DOI] [PubMed] [Google Scholar]
  30. Klar A. J., Strathern J. N., Abraham J. A. Involvement of double-strand chromosomal breaks for mating-type switching in Saccharomyces cerevisiae. Cold Spring Harb Symp Quant Biol. 1984;49:77–88. doi: 10.1101/sqb.1984.049.01.011. [DOI] [PubMed] [Google Scholar]
  31. Kolodkin A. L., Klar A. J., Stahl F. W. Double-strand breaks can initiate meiotic recombination in S. cerevisiae. Cell. 1986 Aug 29;46(5):733–740. doi: 10.1016/0092-8674(86)90349-1. [DOI] [PubMed] [Google Scholar]
  32. Kronenberg A., Little J. B. Molecular characterization of thymidine kinase mutants of human cells induced by densely ionizing radiation. Mutat Res. 1989 Apr;211(2):215–224. doi: 10.1016/0027-5107(89)90004-3. [DOI] [PubMed] [Google Scholar]
  33. Kucherlapati R. S., Eves E. M., Song K. Y., Morse B. S., Smithies O. Homologous recombination between plasmids in mammalian cells can be enhanced by treatment of input DNA. Proc Natl Acad Sci U S A. 1984 May;81(10):3153–3157. doi: 10.1073/pnas.81.10.3153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Langlois R. G., Bigbee W. L., Jensen R. H., German J. Evidence for increased in vivo mutation and somatic recombination in Bloom's syndrome. Proc Natl Acad Sci U S A. 1989 Jan;86(2):670–674. doi: 10.1073/pnas.86.2.670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Levy J. A., Virolainen M., Defendi V. Human lymphoblastoid lines from lymph node and spleen. Cancer. 1968 Sep;22(3):517–524. doi: 10.1002/1097-0142(196809)22:3<517::aid-cncr2820220305>3.0.co;2-a. [DOI] [PubMed] [Google Scholar]
  36. Li C. Y., Yandell D. W., Little J. B. Molecular mechanisms of spontaneous and induced loss of heterozygosity in human cells in vitro. Somat Cell Mol Genet. 1992 Jan;18(1):77–87. doi: 10.1007/BF01233450. [DOI] [PubMed] [Google Scholar]
  37. Liber H. L., Thilly W. G. Mutation assay at the thymidine kinase locus in diploid human lymphoblasts. Mutat Res. 1982 Jun;94(2):467–485. doi: 10.1016/0027-5107(82)90308-6. [DOI] [PubMed] [Google Scholar]
  38. Liber H. L., Yandell D. W., Little J. B. A comparison of mutation induction at the tk and hprt loci in human lymphoblastoid cells; quantitative differences are due to an additional class of mutations at the autosomal tk locus. Mutat Res. 1989 Feb;216(1):9–17. doi: 10.1016/0165-1161(89)90018-6. [DOI] [PubMed] [Google Scholar]
  39. Lichter P., Tang C. J., Call K., Hermanson G., Evans G. A., Housman D., Ward D. C. High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science. 1990 Jan 5;247(4938):64–69. doi: 10.1126/science.2294592. [DOI] [PubMed] [Google Scholar]
  40. Lieber M. R., Hesse J. E., Lewis S., Bosma G. C., Rosenberg N., Mizuuchi K., Bosma M. J., Gellert M. The defect in murine severe combined immune deficiency: joining of signal sequences but not coding segments in V(D)J recombination. Cell. 1988 Oct 7;55(1):7–16. doi: 10.1016/0092-8674(88)90004-9. [DOI] [PubMed] [Google Scholar]
  41. Lin F. L., Sperle K. M., Sternberg N. L. Extrachromosomal recombination in mammalian cells as studied with single- and double-stranded DNA substrates. Mol Cell Biol. 1987 Jan;7(1):129–140. doi: 10.1128/mcb.7.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Lin F. L., Sperle K., Sternberg N. Intermolecular recombination between DNAs introduced into mouse L cells is mediated by a nonconservative pathway that leads to crossover products. Mol Cell Biol. 1990 Jan;10(1):103–112. doi: 10.1128/mcb.10.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Lin F. L., Sperle K., Sternberg N. Model for homologous recombination during transfer of DNA into mouse L cells: role for DNA ends in the recombination process. Mol Cell Biol. 1984 Jun;4(6):1020–1034. doi: 10.1128/mcb.4.6.1020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Lin F. L., Sperle K., Sternberg N. Repair of double-stranded DNA breaks by homologous DNA fragments during transfer of DNA into mouse L cells. Mol Cell Biol. 1990 Jan;10(1):113–119. doi: 10.1128/mcb.10.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Lin P. F., Zhao S. Y., Ruddle F. H. Genomic cloning and preliminary characterization of the human thymidine kinase gene. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6528–6532. doi: 10.1073/pnas.80.21.6528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Malynn B. A., Blackwell T. K., Fulop G. M., Rathbun G. A., Furley A. J., Ferrier P., Heinke L. B., Phillips R. A., Yancopoulos G. D., Alt F. W. The scid defect affects the final step of the immunoglobulin VDJ recombinase mechanism. Cell. 1988 Aug 12;54(4):453–460. doi: 10.1016/0092-8674(88)90066-9. [DOI] [PubMed] [Google Scholar]
  47. McKinnon P. J. Ataxia-telangiectasia: an inherited disorder of ionizing-radiation sensitivity in man. Progress in the elucidation of the underlying biochemical defect. Hum Genet. 1987 Mar;75(3):197–208. doi: 10.1007/BF00281059. [DOI] [PubMed] [Google Scholar]
  48. Metting N. F., Palayoor S. T., Macklis R. M., Atcher R. W., Liber H. L., Little J. B. Induction of mutations by bismuth-212 alpha particles at two genetic loci in human B-lymphoblasts. Radiat Res. 1992 Dec;132(3):339–345. [PubMed] [Google Scholar]
  49. Meyn M. S. High spontaneous intrachromosomal recombination rates in ataxia-telangiectasia. Science. 1993 May 28;260(5112):1327–1330. doi: 10.1126/science.8493577. [DOI] [PubMed] [Google Scholar]
  50. Monnat R. J., Jr, Hackmann A. F., Chiaverotti T. A. Nucleotide sequence analysis of human hypoxanthine phosphoribosyltransferase (HPRT) gene deletions. Genomics. 1992 Jul;13(3):777–787. doi: 10.1016/0888-7543(92)90153-j. [DOI] [PubMed] [Google Scholar]
  51. Moore M. M., Amtower A., Strauss G. H., Doerr C. Genotoxicity of gamma-irradiation in L5178Y mouse lymphoma cells. Mutat Res. 1986 Jun;174(2):149–154. doi: 10.1016/0165-7992(86)90107-7. [DOI] [PubMed] [Google Scholar]
  52. Moore M. M., Clive D., Howard B. E., Batson A. G., Turner N. T. In situ analysis of trifluorothymidine-resistant (TFTr) mutants of L5178Y/TK+/- mouse lymphoma cells. Mutat Res. 1985 Aug;151(1):147–159. doi: 10.1016/0027-5107(85)90193-9. [DOI] [PubMed] [Google Scholar]
  53. Moore M. M., Clive D., Hozier J. C., Howard B. E., Batson A. G., Turner N. T., Sawyer J. Analysis of trifluorothymidine-resistant (TFTr) mutants of L5178Y/TK+/- mouse lymphoma cells. Mutat Res. 1985 Aug;151(1):161–174. doi: 10.1016/0027-5107(85)90194-0. [DOI] [PubMed] [Google Scholar]
  54. Morris T., Thacker J. Formation of large deletions by illegitimate recombination in the HPRT gene of primary human fibroblasts. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1392–1396. doi: 10.1073/pnas.90.4.1392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Mussa T. A., Singh B., Bryant P. E. Enhanced mutability at the tk locus in the radiosensitive double-strand break repair mutant xrs5. Mutat Res. 1990 Aug;231(2):187–193. doi: 10.1016/0027-5107(90)90025-y. [DOI] [PubMed] [Google Scholar]
  56. Nickoloff J. A., Chen E. Y., Heffron F. A 24-base-pair DNA sequence from the MAT locus stimulates intergenic recombination in yeast. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7831–7835. doi: 10.1073/pnas.83.20.7831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Nickoloff J. A., Reynolds R. J. Transcription stimulates homologous recombination in mammalian cells. Mol Cell Biol. 1990 Sep;10(9):4837–4845. doi: 10.1128/mcb.10.9.4837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Nickoloff J. A. Sepharose spin column chromatography. A fast, nontoxic replacement for phenol:chloroform extraction/ethanol precipitation. Mol Biotechnol. 1994 Feb;1(1):105–108. doi: 10.1007/BF02821513. [DOI] [PubMed] [Google Scholar]
  59. Nickoloff J. A., Singer J. D., Hoekstra M. F., Heffron F. Double-strand breaks stimulate alternative mechanisms of recombination repair. J Mol Biol. 1989 Jun 5;207(3):527–541. doi: 10.1016/0022-2836(89)90462-2. [DOI] [PubMed] [Google Scholar]
  60. Okinaka R. T., Anzick S. L., Oller A., Thilly W. G. Analysis of large X-ray-induced mutant populations by denaturing gradient gel electrophoresis. Radiat Res. 1993 Aug;135(2):212–221. [PubMed] [Google Scholar]
  61. Pergola F., Zdzienicka M. Z., Lieber M. R. V(D)J recombination in mammalian cell mutants defective in DNA double-strand break repair. Mol Cell Biol. 1993 Jun;13(6):3464–3471. doi: 10.1128/mcb.13.6.3464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Ray A., Siddiqi I., Kolodkin A. L., Stahl F. W. Intra-chromosomal gene conversion induced by a DNA double-strand break in Saccharomyces cerevisiae. J Mol Biol. 1988 May 20;201(2):247–260. doi: 10.1016/0022-2836(88)90136-2. [DOI] [PubMed] [Google Scholar]
  63. Sato K., Hieda N. Isolation and characterization of a mutant mouse lymphoma cell sensitive to methyl methanesulfonate and X rays. Radiat Res. 1979 Apr;78(1):167–171. [PubMed] [Google Scholar]
  64. Skopek T. R., Liber H. L., Penman B. W., Thilly W. G. Isolation of a human lymphoblastoid line heterozygous at the thymidine kinase locus: possibility for a rapid human cell mutation assay. Biochem Biophys Res Commun. 1978 Sep 29;84(2):411–416. doi: 10.1016/0006-291x(78)90185-7. [DOI] [PubMed] [Google Scholar]
  65. Smith L. E., Grosovsky A. J. Genetic instability on chromosome 16 in a human B lymphoblastoid cell line. Somat Cell Mol Genet. 1993 Nov;19(6):515–527. doi: 10.1007/BF01233379. [DOI] [PubMed] [Google Scholar]
  66. Song K. Y., Chekuri L., Rauth S., Ehrlich S., Kucherlapati R. Effect of double-strand breaks on homologous recombination in mammalian cells and extracts. Mol Cell Biol. 1985 Dec;5(12):3331–3336. doi: 10.1128/mcb.5.12.3331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Southern P. J., Berg P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet. 1982;1(4):327–341. [PubMed] [Google Scholar]
  68. Stahl F. W. Roles of double-strand breaks in generalized genetic recombination. Prog Nucleic Acid Res Mol Biol. 1986;33:169–194. doi: 10.1016/s0079-6603(08)60023-9. [DOI] [PubMed] [Google Scholar]
  69. Stamato T. D., Weinstein R., Giaccia A., Mackenzie L. Isolation of cell cycle-dependent gamma ray-sensitive Chinese hamster ovary cell. Somatic Cell Genet. 1983 Mar;9(2):165–173. doi: 10.1007/BF01543175. [DOI] [PubMed] [Google Scholar]
  70. Taccioli G. E., Rathbun G., Oltz E., Stamato T., Jeggo P. A., Alt F. W. Impairment of V(D)J recombination in double-strand break repair mutants. Science. 1993 Apr 9;260(5105):207–210. doi: 10.1126/science.8469973. [DOI] [PubMed] [Google Scholar]
  71. Tatsumi K., Takebe H. Gamma-irradiation induces mutation in ataxia-telangiectasia lymphoblastoid cells. Gan. 1984 Dec;75(12):1040–1043. [PubMed] [Google Scholar]
  72. Thacker J. The use of integrating DNA vectors to analyse the molecular defects in ionising radiation-sensitive mutants of mammalian cells including ataxia telangiectasia. Mutat Res. 1989 Mar-May;220(2-3):187–204. doi: 10.1016/0165-1110(89)90024-9. [DOI] [PubMed] [Google Scholar]
  73. Thomas K. R., Folger K. R., Capecchi M. R. High frequency targeting of genes to specific sites in the mammalian genome. Cell. 1986 Feb 14;44(3):419–428. doi: 10.1016/0092-8674(86)90463-0. [DOI] [PubMed] [Google Scholar]
  74. Wahls W. P., Moore P. D. Relative frequencies of homologous recombination between plasmids introduced into DNA repair-deficient and other mammalian somatic cell lines. Somat Cell Mol Genet. 1990 Jul;16(4):321–329. doi: 10.1007/BF01232460. [DOI] [PubMed] [Google Scholar]
  75. Wake C. T., Vernaleone F., Wilson J. H. Topological requirements for homologous recombination among DNA molecules transfected into mammalian cells. Mol Cell Biol. 1985 Aug;5(8):2080–2089. doi: 10.1128/mcb.5.8.2080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Ward J. F. Biochemistry of DNA lesions. Radiat Res Suppl. 1985;8:S103–S111. [PubMed] [Google Scholar]
  77. Ward J. F. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol. 1988;35:95–125. doi: 10.1016/s0079-6603(08)60611-x. [DOI] [PubMed] [Google Scholar]
  78. Weichselbaum R. R., Dahlberg W., Beckett M., Karrison T., Miller D., Clark J., Ervin T. J. Radiation-resistant and repair-proficient human tumor cells may be associated with radiotherapy failure in head- and neck-cancer patients. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2684–2688. doi: 10.1073/pnas.83.8.2684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Wlodek D., Hittelman W. N. The repair of double-strand DNA breaks correlates with radiosensitivity of L5178Y-S and L5178Y-R cells. Radiat Res. 1987 Oct;112(1):146–155. [PubMed] [Google Scholar]
  80. Yandell D. W., Dryja T. P., Little J. B. Molecular genetic analysis of recessive mutations at a heterozygous autosomal locus in human cells. Mutat Res. 1990 Mar;229(1):89–102. doi: 10.1016/0027-5107(90)90011-r. [DOI] [PubMed] [Google Scholar]
  81. Yandell D. W., Dryja T. P., Little J. B. Somatic mutations at a heterozygous autosomal locus in human cells occur more frequently by allele loss than by intragenic structural alterations. Somat Cell Mol Genet. 1986 May;12(3):255–263. doi: 10.1007/BF01570784. [DOI] [PubMed] [Google Scholar]
  82. Zdzienicka M. Z., Simons J. W. Mutagen-sensitive cell lines are obtained with a high frequency in V79 Chinese hamster cells. Mutat Res. 1987 Jun;178(2):235–244. doi: 10.1016/0027-5107(87)90274-0. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES