Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1994 Sep;14(9):6004–6012. doi: 10.1128/mcb.14.9.6004

beta-Casein mRNA sequesters a single-stranded nucleic acid-binding protein which negatively regulates the beta-casein gene promoter.

S Altiok 1, B Groner 1
PMCID: PMC359126  PMID: 8065333

Abstract

beta-Casein gene expression in mammary epithelial cells is under the control of the lactogenic hormones, glucocorticoids, insulin, and prolactin. The hormonal control affects gene transcription, and several regulatory elements in the beta-casein gene promoter between positions -80 and -221 have previously been identified. A region located in the promoter between positions -170 and -221 contains overlapping sequences for negative and positive regulatory elements. A sequence-specific single-stranded DNA-binding factor (STR), composed of two proteins with molecular masses of 35 and 54 kDa, recognizes the upper strand of this region and has a repressing role in transcription. High-level STR binding activity was observed in nuclear extracts from mammary glands of pregnant and postlactating mice and from noninduced HC11 mammary epithelial cells, cells with a low level of transcriptional activity of the beta-casein gene. STR activity is downregulated in mammary epithelial cells during lactation of the animals and after lactogenic hormone induction of HC11 cells in culture. These cells strongly transcribe the beta-casein gene. We investigated the mechanism of downregulation and found that a lactogenic-hormone-induced molecule (I-STR) inhibits STR from binding to its DNA target. I-STR is composed of RNA. STR is sequestered into the cytoplasm by I-STR after lactogenic hormone induction of mammary epithelial cells and remains present in an RNA-bound form. A high-affinity STR binding site was found in the 5' untranslated region of beta-casein mRNA. We propose that beta-casein mRNA can function as I-STR. beta-Casein mRNA may positively regulate its own transcription by translocating STR from the nucleus to the cytoplasm. The beta-casein STR binding sequence increases expression of a transfected beta-galactosidase gene when it is placed into the 5' untranslated region sequence of the mRNA. STR may have a positive role in posttranscriptional regulation.

Full text

PDF
6004

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altiok S., Groner B. Interaction of two sequence-specific single-stranded DNA-binding proteins with an essential region of the beta-casein gene promoter is regulated by lactogenic hormones. Mol Cell Biol. 1993 Dec;13(12):7303–7310. doi: 10.1128/mcb.13.12.7303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blackburn D. E., Hobbs A. A., Rosen J. M. Rat beta casein cDNA: sequence analysis and evolutionary comparisons. Nucleic Acids Res. 1982 Apr 10;10(7):2295–2307. doi: 10.1093/nar/10.7.2295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brock M. L., Shapiro D. J. Estrogen stabilizes vitellogenin mRNA against cytoplasmic degradation. Cell. 1983 Aug;34(1):207–214. doi: 10.1016/0092-8674(83)90151-4. [DOI] [PubMed] [Google Scholar]
  4. Burch J. B. Identification and sequence analysis of the 5' end of the major chicken vitellogenin gene. Nucleic Acids Res. 1984 Jan 25;12(2):1117–1135. doi: 10.1093/nar/12.2.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  6. Chong M. T., Lippman M. E. Effects of RNA and ribonuclease on the binding of estrogen and glucocorticoid receptors from MCF-7 cells to DNA-cellulose. J Biol Chem. 1982 Mar 25;257(6):2996–3002. [PubMed] [Google Scholar]
  7. Doppler W., Groner B., Ball R. K. Prolactin and glucocorticoid hormones synergistically induce expression of transfected rat beta-casein gene promoter constructs in a mammary epithelial cell line. Proc Natl Acad Sci U S A. 1989 Jan;86(1):104–108. doi: 10.1073/pnas.86.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Feavers I. M., McEwan I. J., Liang H., Jost J. P. An estradiol-dependent protein from chicken liver binds single-stranded DNA and RNA. J Biol Chem. 1989 Jun 5;264(16):9114–9117. [PubMed] [Google Scholar]
  9. Feldman M., Kallos J., Hollander V. P. RNA inhibits estrogen receptor binding to DNA. J Biol Chem. 1981 Feb 10;256(3):1145–1148. [PubMed] [Google Scholar]
  10. Hager D. A., Burgess R. R. Elution of proteins from sodium dodecyl sulfate-polyacrylamide gels, removal of sodium dodecyl sulfate, and renaturation of enzymatic activity: results with sigma subunit of Escherichia coli RNA polymerase, wheat germ DNA topoisomerase, and other enzymes. Anal Biochem. 1980 Nov 15;109(1):76–86. doi: 10.1016/0003-2697(80)90013-5. [DOI] [PubMed] [Google Scholar]
  11. Hutchens T. W., Markland F. S., Hawkins E. F. RNA induced reversal of glucocorticoid receptor activation. Biochem Biophys Res Commun. 1982 Mar 15;105(1):20–27. doi: 10.1016/s0006-291x(82)80005-3. [DOI] [PubMed] [Google Scholar]
  12. Hynes N. E., Groner B., Sippel A. E., Jeep S., Wurtz T., Nguyen-Huu M. C., Giesecke K., Schütz G. Control of cellular content of chicken egg white protein specific RNA during estrogen administration and withdrawal. Biochemistry. 1979 Feb 20;18(4):616–624. doi: 10.1021/bi00571a011. [DOI] [PubMed] [Google Scholar]
  13. Kamada S., Miwa T. A protein binding to CArG box motifs and to single-stranded DNA functions as a transcriptional repressor. Gene. 1992 Oct 1;119(2):229–236. doi: 10.1016/0378-1119(92)90276-u. [DOI] [PubMed] [Google Scholar]
  14. Lee R. C., Feinbaum R. L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993 Dec 3;75(5):843–854. doi: 10.1016/0092-8674(93)90529-y. [DOI] [PubMed] [Google Scholar]
  15. Liang H. M., Jost J. P. An estrogen-dependent polysomal protein binds to the 5' untranslated region of the chicken vitellogenin mRNA. Nucleic Acids Res. 1991 May 11;19(9):2289–2294. doi: 10.1093/nar/19.9.2289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lino S., Smythe S., Tymoczko J. L., Rossini G. P., Chen C., Hiipakka R. A. RNA-dependent release of androgen and other steroidreceptor complexes from DNA. J Biol Chem. 1980 Jun 25;255(12):5545–5551. [PubMed] [Google Scholar]
  17. Meier V. S., Groner B. The nuclear factor YY1 participates in repression of the beta-casein gene promoter in mammary epithelial cells and is counteracted by mammary gland factor during lactogenic hormone induction. Mol Cell Biol. 1994 Jan;14(1):128–137. doi: 10.1128/mcb.14.1.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nielsen D. A., Shapiro D. J. Estradiol and estrogen receptor-dependent stabilization of a minivitellogenin mRNA lacking 5,100 nucleotides of coding sequence. Mol Cell Biol. 1990 Jan;10(1):371–376. doi: 10.1128/mcb.10.1.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pelham H. R., Brown D. D. A specific transcription factor that can bind either the 5S RNA gene or 5S RNA. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4170–4174. doi: 10.1073/pnas.77.7.4170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rosen J. M., Jones W. K., Rodgers J. R., Compton J. G., Bisbee C. A., David-Inouye Y., Yu-Lee L. Y. Regulatory sequences involved in the hormonal control of casein gene expression. Ann N Y Acad Sci. 1986;464:87–99. doi: 10.1111/j.1749-6632.1986.tb15996.x. [DOI] [PubMed] [Google Scholar]
  21. Rossini G. P., Barbiroli B. RNase-sensitive glucocorticoid-receptor complexes from HELA cell nuclei. Biochem Biophys Res Commun. 1983 Jun 29;113(3):876–882. doi: 10.1016/0006-291x(83)91080-x. [DOI] [PubMed] [Google Scholar]
  22. Sachs A. B. Messenger RNA degradation in eukaryotes. Cell. 1993 Aug 13;74(3):413–421. doi: 10.1016/0092-8674(93)80043-e. [DOI] [PubMed] [Google Scholar]
  23. Schmitt-Ney M., Doppler W., Ball R. K., Groner B. Beta-casein gene promoter activity is regulated by the hormone-mediated relief of transcriptional repression and a mammary-gland-specific nuclear factor. Mol Cell Biol. 1991 Jul;11(7):3745–3755. doi: 10.1128/mcb.11.7.3745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schmitt-Ney M., Happ B., Ball R. K., Groner B. Developmental and environmental regulation of a mammary gland-specific nuclear factor essential for transcription of the gene encoding beta-casein. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):3130–3134. doi: 10.1073/pnas.89.7.3130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schreiber E., Matthias P., Müller M. M., Schaffner W. Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells. Nucleic Acids Res. 1989 Aug 11;17(15):6419–6419. doi: 10.1093/nar/17.15.6419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tafuri S. R., Wolffe A. P. Dual roles for transcription and translation factors in the RNA storage particles of Xenopus oocytes. Trends Cell Biol. 1993 Mar;3(3):94–98. doi: 10.1016/0962-8924(93)90080-k. [DOI] [PubMed] [Google Scholar]
  27. Vonderhaar B. K., Ziska S. E. Hormonal regulation of milk protein gene expression. Annu Rev Physiol. 1989;51:641–652. doi: 10.1146/annurev.ph.51.030189.003233. [DOI] [PubMed] [Google Scholar]
  28. Wilkison W. O., Min H. Y., Claffey K. P., Satterberg B. L., Spiegelman B. M. Control of the adipsin gene in adipocyte differentiation. Identification of distinct nuclear factors binding to single- and double-stranded DNA. J Biol Chem. 1990 Jan 5;265(1):477–482. [PubMed] [Google Scholar]
  29. Wolffe A. P., Brown D. D. Developmental regulation of two 5S ribosomal RNA genes. Science. 1988 Sep 23;241(4873):1626–1632. doi: 10.1126/science.241.4873.1626. [DOI] [PubMed] [Google Scholar]
  30. Wolffe A. P., Tafuri S., Ranjan M., Familari M. The Y-box factors: a family of nucleic acid binding proteins conserved from Escherichia coli to man. New Biol. 1992 Apr;4(4):290–298. [PubMed] [Google Scholar]
  31. Yoshimura M., Banerjee M. R., Oka T. Nucleotide sequence of a cDNA encoding mouse beta casein. Nucleic Acids Res. 1986 Oct 24;14(20):8224–8224. doi: 10.1093/nar/14.20.8224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Young L. S., Dunstan H. M., Witte P. R., Smith T. P., Ottonello S., Sprague K. U. A class III transcription factor composed of RNA. Science. 1991 Apr 26;252(5005):542–546. doi: 10.1126/science.1708526. [DOI] [PubMed] [Google Scholar]
  33. de Wet J. R., Wood K. V., DeLuca M., Helinski D. R., Subramani S. Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol. 1987 Feb;7(2):725–737. doi: 10.1128/mcb.7.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES