Skip to main content
NeuroRx logoLink to NeuroRx
. 2012 Sep 5;3(1):10–21. doi: 10.1016/j.nurx.2005.12.003

How antipsychotics work—From receptors to reality

Shitij Kapur 1,2,, Ofer Agid 1,2, Romina Mizrahi 1,2, Ming Li 1,3
PMCID: PMC3593357  PMID: 16490410

Abstract

How does a small molecule blocking a few receptors change a patients’ passionately held paranoid belief that the FBI is out to get him? To address this central puzzle of anti-psychotic action, we review a framework linking dopamine neurochemistry to psychosis, and then link this framework to the mechanism of action of antipsychotics. Normal dopamine transmission has a role in predicting novel rewards and in marking and responding to motivationally salient stimuli. Abnormal dopamine transmission alters these processes and results in an aberrant sense of novelty and inappropriate assignment of salience leading to the experience of psychosis. Antipsychotics improve psychosis by diminishing this abnormal transmission by blocking the dopamine D2/3 receptor (not D1 or D4), and although several brain regions may be involved, it is suggested that the ventral striatal regions (analog of the nucleus accumbens in animals) may have a particularly critical role. Contrary to popular belief, the antipsychotic effect is not delayed in its onset, but starts within the first few days. There is more improvement in the first 2 weeks, than in any subsequent 2-week period thereafter. However, a simple organic molecule cannot target the complex phenomenology of the individual psychotic experience. Antipsychotics diminish dopamine transmission and thereby dampen the salience of the preoccupying symptoms. Therefore, in the initial stage of an antipsychotic response, the patients experience a detachment from symptoms, a relegation of the delusions and hallucinations to the back of their minds, rather than a complete erasure of the symptoms. Only with time, and only in some, via the mediation of new learning and plasticity, is there a complete resolution of symptoms. The implications of these findings for clinical care, animal models, future target discovery and drug development are discussed.

Key Words: Schizophrenia, dopamine, antipsychotics, D2/3 receptors, salience

References

  • 1.Kapur S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry. 2003;160:13–23. doi: 10.1176/appi.ajp.160.1.13. [DOI] [PubMed] [Google Scholar]
  • 2.Kapur S. How antipsychotics become anti-“psychotic”—from dopamine to salience to psychosis. Trends Pharmacol Sci. 2004;25:402–406. doi: 10.1016/j.tips.2004.06.005. [DOI] [PubMed] [Google Scholar]
  • 3.Wise RA, Spindler J, de Wit H, Gerberg GJ. Neuroleptic-induced “anhedonia” in rats: pimozide blocks reward quality of food. Science. 1978;201:262–264. doi: 10.1126/science.566469. [DOI] [PubMed] [Google Scholar]
  • 4.Salamone JD. The involvement of nucleus accumbens dopamine in appetitive and aversive motivation. Behav Brain Res. 1994;61:117–133. doi: 10.1016/0166-4328(94)90153-8. [DOI] [PubMed] [Google Scholar]
  • 5.Wightman RM, Robinson DL. Transient changes in mesolimbic dopamine and their association with ‘reward.’. J Neurochem. 2002;82:721–735. doi: 10.1046/j.1471-4159.2002.01005.x. [DOI] [PubMed] [Google Scholar]
  • 6.Fibiger HC, Phillips AG. Reward, motivation, cognition: psychobiology of mesotelencephalic dopamine systems. In: Mountcastle VB, editor. Handbook of physiology—the nervous system. Bethesda, MD: American Physiological Society; 1986. pp. 647–675. [Google Scholar]
  • 7.Schultz W. Getting formal with dopamine and reward. Neuron. 2002;36:241–263. doi: 10.1016/s0896-6273(02)00967-4. [DOI] [PubMed] [Google Scholar]
  • 8.Schultz W. Reward signaling by dopamine neurons. Neuroscientist. 2001;7:293–302. doi: 10.1177/107385840100700406. [DOI] [PubMed] [Google Scholar]
  • 9.Phillips PEM, Stuber GD, Heien MLAV, Wightman RM, Carelli RM. Subsecond dopamine release promotes cocaine seeking. Nature. 2003;422:614–618. doi: 10.1038/nature01476. [DOI] [PubMed] [Google Scholar]
  • 10.Berridge KC. Pleasure, pain, desire and dread: hidden core processes of emotion. In: Kahneman D, Diener E, Schwarz N, editors. Well being: the foundations of hedonic psychology. New York: Russel Sage Foundation; 1999. pp. 525–557. [Google Scholar]
  • 11.Berridge KC, Robinson TE. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev. 1998;28:309–369. doi: 10.1016/s0165-0173(98)00019-8. [DOI] [PubMed] [Google Scholar]
  • 12.Wise RA. Dopamine, learning and motivation. Nat Rev Neurosci. 2004;5:483–494. doi: 10.1038/nrn1406. [DOI] [PubMed] [Google Scholar]
  • 13.Mogenson GJ, Jones DL, Yim CY. From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol. 1980;14:69–97. doi: 10.1016/0301-0082(80)90018-0. [DOI] [PubMed] [Google Scholar]
  • 14.Davis KL, Kahn RS, Ko G, Davidson M. Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry. 1991;148:1474–1486. doi: 10.1176/ajp.148.11.1474. [DOI] [PubMed] [Google Scholar]
  • 15.Seeman P, Kapur S. Schizophrenia: more dopamine, more D2 receptors. Proc Natl Acad Sci USA. 2000;97:7673–7675. doi: 10.1073/pnas.97.14.7673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Abi-Dargham A. Do we still believe in the dopamine hypothesis? New data bring new evidence. Int J Neuropsychopharmacol. 2004;7:S1–S5. doi: 10.1017/S1461145704004110. [DOI] [PubMed] [Google Scholar]
  • 17.Harrison PJ, Weinberger DR. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry. 2005;10:40–68. doi: 10.1038/sj.mp.4001558. [DOI] [PubMed] [Google Scholar]
  • 18.Laruelle M, Abi-Dargham A. Dopamine as the wind of the psychotic fire: new evidence from brain imaging studies. J Psychopharmacol. 1999;13:358–371. doi: 10.1177/026988119901300405. [DOI] [PubMed] [Google Scholar]
  • 19.Shizgal P. Neural basis of utility estimation. Curr Opin Neurobiol. 1997;7:198–208. doi: 10.1016/s0959-4388(97)80008-6. [DOI] [PubMed] [Google Scholar]
  • 20.Heinz A. Anhedonia—a general nosology surmounting correlate of a dysfunctional dopaminergic reward system? Nervenarzt. 1999;70:391–398. doi: 10.1007/s001150050454. [DOI] [PubMed] [Google Scholar]
  • 21.Lewis DA, Levitt P. Schizophrenia as a disorder of neurodevelopment. Anna Rev Neurosci. 2002;25:409–432. doi: 10.1146/annurev.neuro.25.112701.142754. [DOI] [PubMed] [Google Scholar]
  • 22.Roberts G. The origins of delusion [see comments] Br J Psychiatry. 1992;161:298–308. doi: 10.1192/bjp.161.3.298. [DOI] [PubMed] [Google Scholar]
  • 23.Bowers MB. Pathogenesis of acute schizophrenic psychosis. An experimental approach. Arch Gen Psychiatry. 1968;19:348–355. doi: 10.1001/archpsyc.1968.01740090092009. [DOI] [PubMed] [Google Scholar]
  • 24.Clody DE, Carlton PL. Stimulus efficacy, chlorpromazine, and schizophrenia. Psychopharmacology. 1980;69:127–131. doi: 10.1007/BF00427637. [DOI] [PubMed] [Google Scholar]
  • 25.Miller R. The time course of neuroleptic therapy for psychosis: role of learning processes and implications for concepts of psychotic illness. Psychopharmacology. 1987;92:405–415. doi: 10.1007/BF00176470. [DOI] [PubMed] [Google Scholar]
  • 26.Miller R. Hyperactivity of associations in psychosis. Aust N Z J Psychiatry. 1989;23:241–248. doi: 10.3109/00048678909062141. [DOI] [PubMed] [Google Scholar]
  • 27.Chouinard G, Miller RA. Rating scale for psychotic symptoms (RSPS) part I: theoretical principles and subscale 1: perception symptoms (illusions and hallucinations) Schizophr Res. 1999;38:101–122. doi: 10.1016/s0920-9964(99)00012-2. [DOI] [PubMed] [Google Scholar]
  • 28.Gerlach J, Larsen EB. Subjective experience and mental side-effects of antipsychotic treatment. Acta Psychiatr Scand Suppl. 1999;395:113–117. doi: 10.1111/j.1600-0447.1999.tb05990.x. [DOI] [PubMed] [Google Scholar]
  • 29.Sanchez-Gonzalez MA, Garcia-Cabezas MA, Rico B, Cavada C. The primate thalamus is a key target for brain dopamine. J Neurosci. 2005;25:6076–6083. doi: 10.1523/JNEUROSCI.0968-05.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Neve KA, Seamans JK, Trantham-Davidson H. Dopamine receptor signaling. J Recept Signal Transduct Res. 2004;24:165–205. doi: 10.1081/rrs-200029981. [DOI] [PubMed] [Google Scholar]
  • 31.Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine receptors: from structure to function. Physiol Rev. 1998;78:189–225. doi: 10.1152/physrev.1998.78.1.189. [DOI] [PubMed] [Google Scholar]
  • 32.Carlsson A, Lindquist M. Effect of chlorpromazine or haloperidol on the formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol. 1963;20:140–144. doi: 10.1111/j.1600-0773.1963.tb01730.x. [DOI] [PubMed] [Google Scholar]
  • 33.van Rossum J, et al. The significance of dopamine-receptor blockade for the action of neuroleptic drugs. In: Brill H, Cole J, Deniker P, Hippius H, Bradley P, et al., editors. Neuropsychopharmacology, Proceedings of the 5th Collegium Internationale Neuropsychopharmacologicum. Amsterdam: Excerpta Medica; 1967. pp. 321–329. [Google Scholar]
  • 34.Seeman P, Chau-Wong M, Tedesco J, Wong K. Brain receptors for antipsychotic drugs and dopamine: direct binding assays. Proc Natl Acad Sci USA. 1975;72:4376–4380. doi: 10.1073/pnas.72.11.4376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Seeman P, Lee T, Chau-Wong M, Wong K. Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature. 1976;261:717–719. doi: 10.1038/261717a0. [DOI] [PubMed] [Google Scholar]
  • 36.Creese I, Burt DR, Snyder SH. Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science. 1976;192:481–483. doi: 10.1126/science.3854. [DOI] [PubMed] [Google Scholar]
  • 37.Kebabian JW, Calne DB. Multiple receptors for dopamine. Nature. 1979;277:93–96. doi: 10.1038/277093a0. [DOI] [PubMed] [Google Scholar]
  • 38.Farde L, Wiesel FA, Halldin C, Sedvall G, et al. PET-determination of central D1- and D2-dopamine receptor occupancy in neuroleptic treated schizophrenics. In: Heiss W-D, Pawlick G, Herholz K, Wienhard K, et al., editors. Clinical efficacy of positron emission tomography. Dordrecht, Holland: Martinus Nijhoff Publishers; 1987. pp. 213–219. [Google Scholar]
  • 39.Nordstrom AL, Farde L, Wiesel FA, et al. Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects—a double-blind PET study of schizophrenic patients. Biol Psychiatry. 1993;33:227–235. doi: 10.1016/0006-3223(93)90288-o. [DOI] [PubMed] [Google Scholar]
  • 40.Kapur S, Zipursky R, Jones C, Remington G, Houle S. Relationship between dopamine D(2) occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. Am J Psychiatry. 2000;157:514–520. doi: 10.1176/appi.ajp.157.4.514. [DOI] [PubMed] [Google Scholar]
  • 41.Kapur S, Mamo D. Half a century of antipsychotics and still a central role for dopamine D2 receptors. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27:1081–1090. doi: 10.1016/j.pnpbp.2003.09.004. [DOI] [PubMed] [Google Scholar]
  • 42.Frankle WG, Gil R, Hackett E, et al. Occupancy of dopamine D-2 receptors by the atypical antipsychotic drugs risperidone and olanzapine: theoretical implications. Psychopharmacology. 2004;175:473–480. doi: 10.1007/s00213-004-1852-4. [DOI] [PubMed] [Google Scholar]
  • 43.Tauscher J, Kapur S. Choosing the right dose of antipsychotics in schizophrenia: lessons from neuroimaging studies. CNS Drugs. 2001;15:671–678. doi: 10.2165/00023210-200115090-00001. [DOI] [PubMed] [Google Scholar]
  • 44.Nyberg S, Nilsson U, Okubo Y, Halldin C, Farde L. Implications of brain imaging for the management of schizophrenia. Int Clin Psychopharmacol. 1998;13(Suppl 3):S15–S20. doi: 10.1097/00004850-199803003-00003. [DOI] [PubMed] [Google Scholar]
  • 45.Nordstrom AL, Farde L, Nyberg S, et al. D1, D2, and 5-HT2 receptor occupancy in relation to clozapine serum concentration: a PET study of schizophrenic patients [see comments] Am J Psychiatry. 1995;152:1444–1449. doi: 10.1176/ajp.152.10.1444. [DOI] [PubMed] [Google Scholar]
  • 46.Kapur S, Zipursky R, Jones C, et al. A positron emission tomography study of quetiapine in schizophrenia: a preliminary finding of an antipsychotic effect with only transiently high dopamine D2 receptor occupancy. Arch Gen Psychiatry. 2000;57:553–559. doi: 10.1001/archpsyc.57.6.553. [DOI] [PubMed] [Google Scholar]
  • 47.Kapur S, Seeman P. Does fast dissociation from the dopamine D2 receptor explain the action of atypical antipsychotics? A new hypothesis. Am J Psychiatry. 2001;158:360–369. doi: 10.1176/appi.ajp.158.3.360. [DOI] [PubMed] [Google Scholar]
  • 48.Yokoi F, Grunder G, Biziere K, et al. Dopamine D2 and D3 receptor occupancy in normal humans treated with the antipsychotic drug aripiprazole (OPC 14597): a study using positron emission tomography and [11C]raclopride. Neuropsychopharmacology. 2002;27:248–259. doi: 10.1016/S0893-133X(02)00304-4. [DOI] [PubMed] [Google Scholar]
  • 49.Seeman P. Atypical antipsychotics: mechanism of action. Can J Psychiatry. 2002;47:27–38. [PubMed] [Google Scholar]
  • 50.Burris KD, Molski TF, Xu C, et al. Aripiprazole, a novel antipsychotic, is a high-affinity partial agonist at human dopamine D2 receptors. J Pharmacol Exp Ther. 2002;302:381–389. doi: 10.1124/jpet.102.033175. [DOI] [PubMed] [Google Scholar]
  • 51.Karlsson P, Smith L, Farde L, et al. Lack of apparent antipsychotic effect of the D1-dopamine receptor antagonist SCH39166 in acutely ill schizophrenic patients. Psychopharmacology (Berl) 1995;121:309–316. doi: 10.1007/BF02246068. [DOI] [PubMed] [Google Scholar]
  • 52.Farde L, Nordstrom AL, Wiesel FA, et al. Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine: relation to extrapyramidal side effects. Arch Gen Psychiatry. 1992;49:538–544. doi: 10.1001/archpsyc.1992.01820070032005. [DOI] [PubMed] [Google Scholar]
  • 53.Den Boer JA, van Megen HJ, Fleischhacker WW, et al. Differential effects of the D1-DA receptor antagonist SCH39166 on positive and negative symptoms of schizophrenia. Psychopharmacology (Berl) 1995;121:317–322. doi: 10.1007/BF02246069. [DOI] [PubMed] [Google Scholar]
  • 54.de Beaurepaire R, Labelle A, Naber D, Jones BD, Barnes TR. An open trial of the D1 antagonist SCH 39166 in six cases of acute psychotic states. Psychopharmacology (Berl) 1995;121:323–327. doi: 10.1007/BF02246070. [DOI] [PubMed] [Google Scholar]
  • 55.Karle J, Clemmesen L, Hansen L, et al. NNC 01-0687, a selective dopamine D1 receptor antagonist, in the treatment of schizophrenia [letter] Psychopharmacology (Berl) 1995;121:328–329. doi: 10.1007/BF02246071. [DOI] [PubMed] [Google Scholar]
  • 56.Tauscher J, Hussain T, Agid O, et al. Equivalent occupancy of dopamine D-1 and D-2 receptors with clozapine: differentiation from other atypical antipsychotics. Am J Psychiatry. 2004;161:1620–1625. doi: 10.1176/appi.ajp.161.9.1620. [DOI] [PubMed] [Google Scholar]
  • 57.Abi-Dargham A, Moore H. Prefrontal DA transmission at D-1 receptors and the pathology of schizophrenia. Neuroscientist. 2003;9:404–416. doi: 10.1177/1073858403252674. [DOI] [PubMed] [Google Scholar]
  • 58.Joyce J. Dopamine D3 receptor as a therapeutic target for antipsychotic and antiparkinsonian drugs. Pharmacol Therapeut. 2001;90:231–259. doi: 10.1016/s0163-7258(01)00139-5. [DOI] [PubMed] [Google Scholar]
  • 59.Joyce JN, Millan MJ. Dopamine D3 receptor antagonists as therapeutic agents. Drug Discov Today. 2005;10:917–925. doi: 10.1016/S1359-6446(05)03491-4. [DOI] [PubMed] [Google Scholar]
  • 60.Ralph RJ, Varty GB, Kelly MA, et al. The dopamine D2, but not D3 or D4, receptor subtype is essential for the disruption of prepulse inhibition produced by amphetamine in mice. J Neurosci. 1999;19:4627–4633. doi: 10.1523/JNEUROSCI.19-11-04627.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Remington G, Kapur S. SB-277011 GlaxoSmithKline. Curr Opin Investig Drugs. 2001;2:946–949. [PubMed] [Google Scholar]
  • 62.Lecrubier Y. Partial D3 receptor agonist in schizophrenia. J Euro College Neuropsychopharmacol. 2003;13:S167–S168. [Google Scholar]
  • 63.Lahti AC, Weiler M, Carlsson A, Tamminga CA. Effects of the D3 and autoreceptor-preferring dopamine antagonist (+)-UH232 in schizophrenia. J Neural Transm. 1998;105:719–734. doi: 10.1007/s007020050091. [DOI] [PubMed] [Google Scholar]
  • 64.Seeman P, Vantol HHM. Dopamine D4-like receptor elevation in schizophrenia: Cloned D2 and D4 receptors cannot be discriminated by raclopride competition against [H-3]nemonapride. J Neurochem. 1995;64:1413–1415. doi: 10.1046/j.1471-4159.1995.64031413.x. [DOI] [PubMed] [Google Scholar]
  • 65.Seeman P, Guan HC, VanTol HH. Dopamine D4 receptors elevated in schizophrenia [see comments] Nature. 1993;365:441–445. doi: 10.1038/365441a0. [DOI] [PubMed] [Google Scholar]
  • 66.Seeman P. Dopamine receptor sequences. Therapeutic levels of neuroleptics occupy D2 receptors, clozapine occupies D4. Neuropsychopharmacology. 1992;7:261–284. [PubMed] [Google Scholar]
  • 67.Corrigan MH, Gallen CC, Bonura ML, Merchant KM. Effectiveness of the selective D-4 antagonist sonepiprazole in schizophrenia: a placebo-controlled trial. Biol Psychiatry. 2004;55:445–451. doi: 10.1016/j.biopsych.2003.10.004. [DOI] [PubMed] [Google Scholar]
  • 68.Bristow LJ, Kramer MS, Kulagowski J, et al. Schizophrenia and L-745, 870, a novel dopamine D4 receptor antagonist. Trends Pharmacol Sci. 1997;18:186–188. doi: 10.1016/s0165-6147(97)01066-3. [DOI] [PubMed] [Google Scholar]
  • 69.Truffinet P, Tamminga CA, Fabre LF, et al. Placebo-controlled study of the D4/5-HT2A antagonist fananserin in the treatment of schizophrenia. Am J Psychiatry. 1999;156:419–425. doi: 10.1176/ajp.156.3.419. [DOI] [PubMed] [Google Scholar]
  • 70.Seeman P, Ulpian C. Neuroleptics have identical potencies in human brain limbic and putamen regions. Eur J Pharmacol. 1983;94:145–148. doi: 10.1016/0014-2999(83)90452-1. [DOI] [PubMed] [Google Scholar]
  • 71.Leysen JE, Gommeren W, Mertens J, et al. Comparison of in vitro binding properties of a series of dopamine antagonists and agonists for cloned human dopamine D2S and D2L receptors and for D2 receptors in rat striatal and mesolimbic tissues, using [1251] 2′-iodospiperone. Psychopharmacology. 1993;110:27–36. doi: 10.1007/BF02246947. [DOI] [PubMed] [Google Scholar]
  • 72.Usiello A, Baik JH, Rouge-Pont F, et al. Distinct functions of the two isoforms of dopamine D2 receptors. Nature. 2000;408:199–203. doi: 10.1038/35041572. [DOI] [PubMed] [Google Scholar]
  • 73.Centonze D, Usiello A, Gubellini P, et al. Dopamine D2 receptor-mediated inhibition of dopaminergic neurons in mice lacking D2L receptors. Neuropsychopharmacology. 2002;27:723–726. doi: 10.1016/S0893-133X(02)00367-6. [DOI] [PubMed] [Google Scholar]
  • 74.Bressan RA, Erlandsson K, Spencer EP, Ell PJ, Pilowsky LS. Prolactinemia is uncoupled from central D-2/D-3 dopamine receptor occupancy in amisulpride treated patients. Psychopharmacology. 2004;175:367–373. doi: 10.1007/s00213-004-1826-6. [DOI] [PubMed] [Google Scholar]
  • 75.Goodnick PJ, Rodriguez L, Santana O. Antipsychotics: impact on prolactin levels. Expert Opin Pharmacother. 2002;3:1381–1391. doi: 10.1517/14656566.3.10.1381. [DOI] [PubMed] [Google Scholar]
  • 76.Schotte A, Janssen PF, Gommeren W, et al. Risperidone compared with new and reference antipsychotic drugs: in vitro and in vivo receptor binding. Psychopharmacology. 1996;124:57–73. doi: 10.1007/BF02245606. [DOI] [PubMed] [Google Scholar]
  • 77.Arnt J, Skarsfeldt T. Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence. Neuropsychopharmacology. 1998;18:63–101. doi: 10.1016/S0893-133X(97)00112-7. [DOI] [PubMed] [Google Scholar]
  • 78.Kapur S, Langlois X, Vinken P, et al. The differential effects of atypical antipsychotics on prolactin elevation are explained by their differential blood-brain disposition: a pharmacological analysis in rats. J Pharmacol Exp Ther. 2002;302:1129–1134. doi: 10.1124/jpet.102.035303. [DOI] [PubMed] [Google Scholar]
  • 79.Robertson GS, Fibiger HC. Neuroleptics increase c-fos expression in the forebrain: contrasting effects of haloperidol and clozapine. Neuroscience. 1992;46:315–328. doi: 10.1016/0306-4522(92)90054-6. [DOI] [PubMed] [Google Scholar]
  • 80.Robertson GS, Matsumura H, Fibiger HC. Induction patterns of Fos-like immunoreactivity in the forebrain as predictors of atypical antipsychotic activity. J Pharmacol Exp Ther. 1994;271:1058–1066. [PubMed] [Google Scholar]
  • 81.Grace AA, Bunney BS, Moore H, Todd CL. Dopamine-cell depolarization block as a model for the therapeutic actions of antipsychotic drugs. Trends Neurosci. 1997;20:31–37. doi: 10.1016/S0166-2236(96)10064-3. [DOI] [PubMed] [Google Scholar]
  • 82.Skarsfeldt T. Differential effects of repeated administration of novel antipsychotic drugs on the activity of midbrain dopamine neurons in the rat. Eur J Pharmacol. 1995;281:289–294. doi: 10.1016/0014-2999(95)00260-r. [DOI] [PubMed] [Google Scholar]
  • 83.Skarsfeldt T. Differential effects after repeated treatment with haloperidol, clozapine, thioridazine and tefludazine on SNC and VTA dopamine neurones in rats. Life Sci. 1988;42:1037–1044. doi: 10.1016/0024-3205(88)90558-9. [DOI] [PubMed] [Google Scholar]
  • 84.Fibiger HC, Phillips AG. Mesocorticolimbic dopamine systems and reward. Ann NY Ac ad Sci. 1988;537:206–215. doi: 10.1111/j.1749-6632.1988.tb42107.x. [DOI] [PubMed] [Google Scholar]
  • 85.Ettenberg A. Dopamine, neuroleptics and reinforced behavior. Neurosci Biobehav Rev. 1989;13:105–111. doi: 10.1016/s0149-7634(89)80018-1. [DOI] [PubMed] [Google Scholar]
  • 86.Wise RA. Brain reward circuitry: insights from unsensed incentives. Neuron. 2002;36:229–240. doi: 10.1016/s0896-6273(02)00965-0. [DOI] [PubMed] [Google Scholar]
  • 87.Bigliani V, Mulligan RS, Acton PD, et al. Striatal and temporal cortical D2/D3 receptor occupancy by olanzapine and sertindole in vivo: a. Psychopharmacology (Berl) 2000;150:131–140. doi: 10.1007/s002130000435. [DOI] [PubMed] [Google Scholar]
  • 88.Xiberas X, Martinot JL, Mallet L, et al. Extrastriatal and striatal D(2) dopamine receptor blockade with haloperidol or new antipsychotic drugs in patients with schizophrenia. Br J Psychiatry. 2001;179:503–508. doi: 10.1192/bjp.179.6.503. [DOI] [PubMed] [Google Scholar]
  • 89.Olsson H, Farde L. Potentials and pitfalls using high affinity radioligands in PET and SPET determinations on regional drug induced D2 receptor occupancy—a simulation study based on experimental data. Neuroimage. 2001;14:936–945. doi: 10.1006/nimg.2001.0879. [DOI] [PubMed] [Google Scholar]
  • 90.Talvik M, Nordstrom AL, Nyberg S, et al. No support for regional selectivity in clozapine-treated patients: a PET study with [(11)C]raclopride and [(11)C]FLB 457. Am J Psychiatry. 2001;158:926–930. doi: 10.1176/appi.ajp.158.6.926. [DOI] [PubMed] [Google Scholar]
  • 91.Yasuno F, Suhara T, Okubo Y, et al. Dose relationship of limbic-cortical D2-dopamine receptor occupancy with risperidone. Psychopharmacology (Berl) 2001;154:112–114. doi: 10.1007/s002130000643. [DOI] [PubMed] [Google Scholar]
  • 92.Kessler RM, Ansari MS, Riccardi P, et al. Occupancy of striatal and extrastriatal dopamine D(2)/D(3) receptors by Olanzapine and Haloperidol. Neuropsychopharmacology. 2005;30:2283–2289. doi: 10.1038/sj.npp.1300836. [DOI] [PubMed] [Google Scholar]
  • 93.Tauscher J, Jones C, Remington G, Zipursky RB, Kapur S. Significant dissociation of brain and plasma kinetics with antipsychotics. Mol Psychiatry. 2002;7:317–321. doi: 10.1038/sj.mp.4001009. [DOI] [PubMed] [Google Scholar]
  • 94.Agid O, Mamo D, Zipursky RB, et al. Differentiating the roles of striatal vs. extrastriatal dopamine D2 receptors in antipsychotic response—a PET study. Schizophr Bull. 2005;31:442–442. [Google Scholar]
  • 95.Gelder MG, Løpez-Ibor JJ, Andreasen N. New Oxford textbook of psychiatry. New York: Oxford University Press, Inc.; 2000. [Google Scholar]
  • 96.Grace AA, Bunney BS. Psychopharmacology. New York: Raven Press; 1995. Electro physio logical properties of mid-brain dopamine neurons; pp. 163–177. [Google Scholar]
  • 97.Marder SV, Van-Kammen DP. Dopamine receptor antagonists. In: Kaplan HS, BJ, editors. Comprehensive textbook of psychiatry. Baltimore: Lippincott Williams & Wilkins; 2000. pp. 2356–2377. [Google Scholar]
  • 98.Van-Kammen DP, SR . Serotonin dopamine antagonists. In: Kaplan HI, Sadock BJ, editors. Comprehensive textbook of psychiatry. Baltimore: Lippincot, Williams & Wilkins; 2000. pp. 2455–2473. [Google Scholar]
  • 99.Brodie MS, Bunney EB. Serotonin potentiates dopamine inhibition of ventral tegmental area neurons in vitro. J Neurophysiol. 1996;76:2077–2082. doi: 10.1152/jn.1996.76.3.2077. [DOI] [PubMed] [Google Scholar]
  • 100.Grace AA. The depolarization block hypothesis of neuroleptic action: implications for the etiology and treatment of schizophrenia. J Neural Transm Suppl. 1992;36:91–131. doi: 10.1007/978-3-7091-9211-5_6. [DOI] [PubMed] [Google Scholar]
  • 101.Grace AA. Cortical regulation of subcortical dopamine systems and its possible relevance to schizophrenia. J Neural Transm Gen Sect. 1993;91:111–134. doi: 10.1007/BF01245228. [DOI] [PubMed] [Google Scholar]
  • 102.Grace AA, Bunney BS. Induction of depolarization block in midbrain dopamine neurons by repeated administration of haloperidol: analysis using in vivo intracellular recording. J Pharmacol Exp Ther. 1986;238:1092–1100. [PubMed] [Google Scholar]
  • 103.Harden DG, Grace AA. Activation of dopamine cell firing by repeated L-DOPA administration to dopamine-depleted rats: its potential role in mediating the therapeutic response to L-DOPA treatment. J Neurosci. 1995;15:6157–6166. doi: 10.1523/JNEUROSCI.15-09-06157.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104.Hollerman JR, Abercrombie E, Grace AA. Electro physiological, biochemical, and behavioral studies of acute haloperidol-induced depolarization block of nigral dopamine neurons. Neuroscience. 1992;47:589–601. doi: 10.1016/0306-4522(92)90168-2. [DOI] [PubMed] [Google Scholar]
  • 105.Hollerman JR, Grace AA. Acute haloperidol administration induces depolarization block of nigral dopamine neurons in rats after partial dopamine lesions. Neurosci Lett. 1989;96:82–88. doi: 10.1016/0304-3940(89)90247-4. [DOI] [PubMed] [Google Scholar]
  • 106.Hollerman JR, Grace AA. Subthalamic nucleus cell firing in the 6-OHDA-treated rat: basal activity and response to haloperidol. Brain Res. 1992;590:291–290. doi: 10.1016/0006-8993(92)91108-q. [DOI] [PubMed] [Google Scholar]
  • 107.Moore H, Todd CL, Grace AA. Striatal extracellular dopamine levels in rats with haloperidol-induced depolarization block of substantia nigra dopamine neurons. J Neurosci. 1998;18:5068–5077. doi: 10.1523/JNEUROSCI.18-13-05068.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Onn SP, Grace AA. Repeated treatment with haloperidol and clozapine exerts differential effects on dye coupling between neurons in subregions of striatum and nucleus accumbens. J Neurosci. 1995;15:7024–7036. doi: 10.1523/JNEUROSCI.15-11-07024.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Pucak ML, Grace AA. Evidence that systemically administered dopamine antagonists activate dopamine neuron firing primarily by blockade of somatodendritic autoreceptors. J Pharmacol Exp Ther. 1994;271:1181–1192. [PubMed] [Google Scholar]
  • 110.Nordstrom AL, Farde L, Halldin C. Time course of D2-dopamine receptor occupancy examined by PET after single oral doses of haloperidol. Psychopharmacology (Berl) 1992;106:433–438. doi: 10.1007/BF02244811. [DOI] [PubMed] [Google Scholar]
  • 111.Baldessarini RJ, Cohen BM, Teicher M. Pharmacologic treatment. In: Levy ST, Ninan PT, editors. Schizophrenia: treatment of acute psychotic episodes. Washington, DC: American Psychiatric Press; 1990. pp. 61–118. [Google Scholar]
  • 112.Elkes J, Elkes C. Effects of chlorpromazine on the behaviour of chronically overactive psychotic patients. BMJ. 1954;4:560–565. doi: 10.1136/bmj.2.4887.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113.Winkelman NW. Chlorpromazine in the treatment of neuropsychiatric disorders. JAMA. 1954;155:18–21. doi: 10.1001/jama.1954.03690190024007. [DOI] [PubMed] [Google Scholar]
  • 114.Delay J, Deniker P, Harl JM, Grasset A. [N-dimethylamino-prophylchlorophenothiazine (4560 RP) therapy of confusional states.] Ann Med Psychol (Paris) 1952;110:398–403. [PubMed] [Google Scholar]
  • 115.Delay J, Deniker P, Harl JM. [Therapeutic use in psychiatry of phenothiazine of central elective action (4560 RP).] Ann Med Psychol (Paris) 1952;110:112–117. [PubMed] [Google Scholar]
  • 116.Stern RG, Kahn RS, Davidson M, Nora RM, Davis KL. Early response to clozapine in schizophrenia. Am J Psychiatry. 1994;151:1817–1818. doi: 10.1176/ajp.151.12.1817. [DOI] [PubMed] [Google Scholar]
  • 117.Stern RG, Kahn RS, Harvey PD, et al. Early response to haloperidol treatment in chronic schizophrenia. Schizophr Res. 1993;10:165–171. doi: 10.1016/0920-9964(93)90052-k. [DOI] [PubMed] [Google Scholar]
  • 118.McDermott BE, Sautter FJ, Garver DL. Heterogeneity of schizophrenia: relationship to latency of neuroleptic response. Psychiatry Res. 1991;37:97–103. doi: 10.1016/0165-1781(91)90109-3. [DOI] [PubMed] [Google Scholar]
  • 119.Garver DL, Kelly K, Fried KA, Magnusson M, Hirschowitz J. Drug response patterns as a basis of nosology for the mood-incongruent psychoses (the schizophrenias) Psychol Med. 1988;18:873–885. doi: 10.1017/s0033291700009818. [DOI] [PubMed] [Google Scholar]
  • 120.Garver DL, Steinberg JL, McDermott BE, et al. Etiologic heterogeneity of the psychoses: is there a dopamine psychosis? Neuropsychopharmacology. 1997;16:191–201. doi: 10.1016/S0893-133X(96)00186-8. [DOI] [PubMed] [Google Scholar]
  • 121.Agid O, Kapur S, Arenovich T, Zipursky RB. Delayed-onset hypothesis of antipsychotic action: a hypothesis tested and rejected. Arch Gen Psychiatry. 2003;60:1228–1235. doi: 10.1001/archpsyc.60.12.1228. [DOI] [PubMed] [Google Scholar]
  • 122.Kapur S, Arenovich T, Agid O, et al. Evidence for onset of antipsychotic effects within the first 24 hours of treatment. Am J Psychiatry. 2005;162:939–946. doi: 10.1176/appi.ajp.162.5.939. [DOI] [PubMed] [Google Scholar]
  • 123.Leucht S, Busch R, Hamann J, Kissling W, Kane JM. Early-onset hypothesis of antipsychotic drug action: a hypothesis tested, confirmed and extended. Biol Psychiatry. 2005;57:1543–1549. doi: 10.1016/j.biopsych.2005.02.023. [DOI] [PubMed] [Google Scholar]
  • 124.Casey JF, Bennett IF, Lindley CJ, et al. Drug therapy in schizophrenia. A controlled study of the relative effectiveness of chlorpromazine, promazine, phenobarbital, and placebo. Arch Gen Psychiatry. 1960;2:210–220. doi: 10.1001/archpsyc.1960.03590080086012. [DOI] [PubMed] [Google Scholar]
  • 125.Casey JF, Lasky JJ, Klett CJ, Hollister LE. Treatment of schizophrenic reactions with phenothiazine derivatives. A comparative study of chlorpromazine, triflupromazine, mepazine, prochlorperazine, perphenazine, and phenobarbital. Am J Psychiatry. 1960;117:97–105. doi: 10.1176/ajp.117.2.97. [DOI] [PubMed] [Google Scholar]
  • 126.Ceskova E, Svestka J. Double-blind comparison of risperidone and haloperidol in schizophrenic and schizoaffective psychoses. Pharmacopsychiatry. 1993;26:121–124. [PubMed] [Google Scholar]
  • 127.Johnstone EC, Crow TJ, Frith CD, Carney MW, Price JS. Mechanism of the antipsychotic effect in the treatment of acute schizophrenia. Lancet. 1978;1:848–851. doi: 10.1016/s0140-6736(78)90193-9. [DOI] [PubMed] [Google Scholar]
  • 128.Voruganti LN, Awad AG. Personal evaluation of transitions in treatment (PETiT): a scale to measure subjective aspects of antipsychotic drug therapy in schizophrenia. Schizophr Res. 2002;56:37–46. doi: 10.1016/s0920-9964(01)00161-x. [DOI] [PubMed] [Google Scholar]
  • 129.Kampman O, Lehtinen K, Lassila V, et al. Attitudes towards neuroleptic treatment: reliability and validity of the attitudes towards neuroleptic treatment (ANT) questionnaire. Schizophr Res. 2000;45:223–234. doi: 10.1016/s0920-9964(99)00204-2. [DOI] [PubMed] [Google Scholar]
  • 130.Thompson K, Kulkarni J, Sergejew AA. Reliability and validity of a new Medication Adherence Rating Scale (MARS) for the psychoses. Schizophr Res. 2000;42:241–247. doi: 10.1016/s0920-9964(99)00130-9. [DOI] [PubMed] [Google Scholar]
  • 131.Van Putten T, May PR, Marder SR, Wittmann LA. Subjective response to antipsychotic drugs. Arch Gen Psychiatry. 1981;38:187–190. doi: 10.1001/archpsyc.1981.01780270073010. [DOI] [PubMed] [Google Scholar]
  • 132.Awad AG, Voruganti LN. Quality of life and new antipsychotics in schizophrenia. Are patients better off? Int J Soc Psychiatry. 1999;45:268–275. doi: 10.1177/002076409904500405. [DOI] [PubMed] [Google Scholar]
  • 133.Awad AG, Hogan TP, Voruganti LN, Heslegrave RJ. Patients’ subjective experiences on antipsychotic medications: implications for outcome and quality of life. Int Clin Psychopharmacol. 1995;10(Suppl 3):123–132. doi: 10.1097/00004850-199509000-00016. [DOI] [PubMed] [Google Scholar]
  • 134.Diamond R. Drugs and the quality of life: the patient’s point of view. J Clin Psychiatry. 1985;46:29–35. [PubMed] [Google Scholar]
  • 135.Hogan TP, Awad AG. Subjective response to neuroleptics and outcome in schizophrenia: a re-examination comparing two measures. Psychol Med. 1992;22:347–352. doi: 10.1017/s0033291700030282. [DOI] [PubMed] [Google Scholar]
  • 136.Mizrahi R, Bagby RM, Zipursky RB, Kapur S. How antipsychotics work: the patients’ perspective. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29:859–864. doi: 10.1016/j.pnpbp.2005.03.001. [DOI] [PubMed] [Google Scholar]
  • 137.Mizrahi R, Bagby R, Remington G, Zipursky R, Kapur S. Understanding how antipsychotics improve psychosis: a multidimensional perspective. Schizophr Bull. 2005;31:497–497. [Google Scholar]
  • 138.Abi-Dargham A, Rodenhiser J, Printz D, et al. Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci USA. 2000;97:8104–8109. doi: 10.1073/pnas.97.14.8104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139.Laborit H, Huguenard P. L’ hibernation artificielle par moyen pharmacodynamique et physisques. Presse Med. 1951;59:1321–1321. [PubMed] [Google Scholar]
  • 140.Delay J, Deniker P, Harl JM. [Therapeutic method derived from hiberno-therapy in excitation and agitation states] Ann Med Psychol (Paris) 1952;110:267–273. [PubMed] [Google Scholar]
  • 141.Amt J. Pharmacological specificity of conditioned avoidance response inhibition in rats: inhibition by neuroleptics and correlation to dopamine receptor blockade. Acta Pharmacol Toxicol (Copenh) 1982;51:321–329. doi: 10.1111/j.1600-0773.1982.tb01032.x. [DOI] [PubMed] [Google Scholar]
  • 142.Ellenbroek BA, Peeters BW, Honig WM, Cools AR. The paw test: a behavioural paradigm for differentiating between classical and atypical neuroleptic drugs. Psychopharmacology (Berl) 1987;93:343–348. doi: 10.1007/BF00187254. [DOI] [PubMed] [Google Scholar]
  • 143.Hoffman DC, Donovan H. Catalepsy as a rodent model for detecting antipsychotic drugs with extrapyramidal side effect liability. Psychopharmacology (Berl) 1995;120:128–133. doi: 10.1007/BF02246184. [DOI] [PubMed] [Google Scholar]
  • 144.Weiner I. The “two-headed” latent inhibition model of schizophrenia: modeling positive and negative symptoms and their treatment. Psychopharmacology (Berl) 2003;169:257–297. doi: 10.1007/s00213-002-1313-x. [DOI] [PubMed] [Google Scholar]
  • 145.Johansson C, Jackson DM, Zhang J, Svensson L. Prepulse inhibition of acoustic startle, a measure of sensorimotor gating: effects of antipsychotics and other agents in rats. Pharmacol Biochem Behav. 1995;52:649–654. doi: 10.1016/0091-3057(95)00160-x. [DOI] [PubMed] [Google Scholar]
  • 146.Sams-Dodd F. Effects of dopamine agonists and antagonists on PCP-induced stereotyped behaviour and social isolation in the rat social interaction test. Psychopharmacology (Berl) 1998;135:182–193. doi: 10.1007/s002130050500. [DOI] [PubMed] [Google Scholar]
  • 147.Lipska BK. Using animal models to test a neurodevelopmental hypothesis of schizophrenia. J Psychiatry Neurosci. 2004;29:282–286. [PMC free article] [PubMed] [Google Scholar]
  • 148.Feldon J, Weiner I. The latent inhibition model of schizophrenic attention disorder. Haloperidol and sulpiride enhance rats’ ability to ignore irrelevant stimuli. Biol Psychiatry. 1991;29:635–646. doi: 10.1016/0006-3223(91)90133-7. [DOI] [PubMed] [Google Scholar]
  • 149.Swerdlow NR, Geyer MA. Clozapine and haloperidol in an animal model of sensorimotor gating deficits in schizophrenia. Pharmacol Biochem Behav. 1993;44:741–744. doi: 10.1016/0091-3057(93)90193-w. [DOI] [PubMed] [Google Scholar]
  • 150.Hiroi N, Graybiel AM. Atypical and typical neuroleptic treatments induce distinct programs of transcription factor expression in the striatum. J Comp Neurol. 1996;374:70–83. doi: 10.1002/(SICI)1096-9861(19961007)374:1<70::AID-CNE5>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  • 151.Andersen MP, Pouzet B. Effects of acute versus chronic treatment with typical or atypical antipsychotics on d-amphetamine-induced sensorimotor gating deficits in rats. Psychopharmacology (Berl) 2001;156:291–304. doi: 10.1007/s002130100818. [DOI] [PubMed] [Google Scholar]
  • 152.Kilts CD. The changing roles and targets for animal models of schizophrenia. Biol Psychiatry. 2001;50:845–855. doi: 10.1016/s0006-3223(01)01286-0. [DOI] [PubMed] [Google Scholar]
  • 153.Wadenberg ML, Hicks PB. The conditioned avoidance response test re-evaluated: is it a sensitive test for the detection of potentially atypical antipsychotics? Neurosci Biobehav Rev. 1999;23:851–862. doi: 10.1016/s0149-7634(99)00037-8. [DOI] [PubMed] [Google Scholar]
  • 154.Solomon RL, Kamin LJ, Wynne LC. Traumatic avoidance learning: the outcomes of several extinction procedures with dogs. J Abnormal Social Psychol. 1953;48:291–302. doi: 10.1037/h0058943. [DOI] [PubMed] [Google Scholar]
  • 155.Baum M. Efficacy of response prevention (flooding) in facilitating the extinction of an avoidance response in rats: the effect of overtraining the response. Behav Res Ther. 1968;6:197–203. [Google Scholar]
  • 156.Reckless G, Natesan S, Parkes J, et al. Dissociation between blockade and functional antagonism of D2 receptors—comparing aripiprazole to other typical and atypical antipsychotics in animal models. Schizophr Bull. 2005;31:309–309. doi: 10.1038/sj.npp.1300983. [DOI] [PubMed] [Google Scholar]
  • 157.Wadenberg ML, Kapur S, Soliman A, Jones C, Vaccarino F. Dopamine D2 receptor occupancy predicts catalepsy and the suppression of conditioned avoidance response behavior in rats. Psychopharmacology (Berl) 2000;150:422–429. doi: 10.1007/s002130000466. [DOI] [PubMed] [Google Scholar]
  • 158.Beninger RJ. The role of serotonin and dopamine in learning to avoid aversive stimuli. In: Archer T, Nilsson L, editors. Aversion, avoidance, and anxiety: perspective on aversively motivated behavior. Hillsdale, NJ: Lawrence Erlbaum Associates; 1989. pp. 265–284. [Google Scholar]
  • 159.Li M, Parkes J, Fletcher PJ, Kapur S. Evaluation of the motor initiation hypothesis of APD-induced conditioned avoidance decreases. Pharmacol Biochem Behav. 2004;78:811–819. doi: 10.1016/j.pbb.2004.05.023. [DOI] [PubMed] [Google Scholar]
  • 160.Li M, Kapur S, Fletcher P. Examining the time course of anti-psychotic treatment in schizophrenia using conditioned avoidance responding model. Washington, DC: Society for Neuroscience; 2005. [Google Scholar]
  • 161.Gilbert PL, Harris M, McAdams LA, Jeste DV. Neuroleptic withdrawal in schizophrenic patients. A review of the literature. Arch Gen Psychiatry. 1995;52:173–188. doi: 10.1001/archpsyc.1995.03950150005001. [DOI] [PubMed] [Google Scholar]
  • 162.Lieberman JA, Swartz MS, Rosenheck RA, et al. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med. 2005;353:1209–1223. doi: 10.1056/NEJMoa051688. [DOI] [PubMed] [Google Scholar]
  • 163.Malhotra AK, Murphy GM, Kennedy JL. Pharmacogenetics of psychotropic drug response. Am J Psychiatry. 2004;161:780–796. doi: 10.1176/appi.ajp.161.5.780. [DOI] [PubMed] [Google Scholar]
  • 164.Blasi G, Bertolino A. Imaging genomics and response to treatment with antipsychotics in schizophrenia. NeuroRx. 2006;3:117–130. doi: 10.1016/j.nurx.2005.12.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 165.Stahl S. Finding what you are not looking for: strategies for developing novel treatments in psychiatry. NeuroRx. 2006;3:3–9. doi: 10.1016/j.nurx.2005.12.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 166.Sanger DJ. The search for novel antipsychotics: pharmacological and molecular targets. Expert Opin Ther Targets. 2004;8:631–641. doi: 10.1517/14728222.8.6.631. [DOI] [PubMed] [Google Scholar]
  • 167.Beaulieu JM, Sotnikova TD, Marion S, et al. An Akt/β-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell. 2005;122:261–273. doi: 10.1016/j.cell.2005.05.012. [DOI] [PubMed] [Google Scholar]
  • 168.Bartlett SE, Enquist J, Hopf FW, et al. Dopamine responsiveness is regulated by targeted sorting of D2 receptors. Proc Natl Acad Sci USA. 2005;102:11521–11526. doi: 10.1073/pnas.0502418102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 169.Lee SP, So CH, Rashid AJ, et al. Dopamine D1 and D2 receptor co-activation generates a novel phospholipase C-mediated calcium signal. J Biol Chem. 2004;279:35671–35688. doi: 10.1074/jbc.M401923200. [DOI] [PubMed] [Google Scholar]
  • 170.George SR, Ng GY, Lee SP, et al. Blockade of G protein-coupled receptors and the dopamine transporter by a transmembrane domain peptide: Novel strategy for functional inhibition of membrane proteins in vivo. J Pharmacol Exp Ther. 2003;307:481–489. doi: 10.1124/jpet.103.053843. [DOI] [PubMed] [Google Scholar]
  • 171.Simon AB, Gorman JM. Advances in the treatment of anxiety: targeting glutamate. NeuroRx. 2006;3:57–68. doi: 10.1016/j.nurx.2005.12.005. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from NeuroRx are provided here courtesy of Am. Soc. for Experimental NeuroTherapeutics

RESOURCES