Skip to main content
NeuroRx logoLink to NeuroRx
. 2012 Sep 5;3(1):106–116. doi: 10.1016/j.nurx.2005.12.004

Pharmacogenetic tools for the development of target-oriented cognitive-enhancing drugs

José A Apud 1,, Daniel R Weinberger 1
PMCID: PMC3593364  PMID: 16490417

Abstract

The identification of the anatomical and physiological substrates involved in the regulation of the dorsolateral prefrontal cortex function in humans provided the basis for the understanding of mechanisms involved in cognitive and executive function under normal as well as pathological conditions. In this context, substantial evidence indicates that alterations in monaminergic function in the dorsolateral prefrontal cortex significantly contributes to the cognitive impairments present in schizophrenia, attention deficit disorders, and other neuropsychiatric conditions. The development of a number of compounds that selectively increase extracellular dopamine (DA) concentrations in the dorsolateral prefrontal cortex but not in subcortical areas by either blocking its metabolism or reuptake, or increasing its release, or that directly activate postsynaptic DA-1 receptor mechanisms provided powerful pharmacotherapeutic tools to mitigate the cognitive deficits brought about by the dopaminergic alterations of the prefrontal cortex. More recently, the findings that polymorphisms of the catecholamine-O-methyl-transferase gene may also modify the effect of these drugs on the prefrontal cortex points toward a more specific genotype-based neuropsychopharmacology for the treatment of cognitive deficits in schizophrenia as well as in a number of other neuropsychiatric conditions. The ability of these compounds to increase DA load selectively in the frontal cortex and not on subcortical systems allows a targeted intervention without the stimulant-like effects observed with older drugs used to treat those conditions.

Key Words: Dorsolateral prefrontal cortex, dopamine, schizophrenia, attention deficit disorder, dopamine-1 receptors, Tolcapone, Modafinil, Atomoxetine, DAS-431

References

  • 1.Goldberg TE, Weinberger D. Probing prefrontal function in schizophrenia with neuropsychological paradigms. Schizophr Bull. 1988;14:179–183. doi: 10.1093/schbul/14.2.179. [DOI] [PubMed] [Google Scholar]
  • 2.Da Prada M, Zurcher G, Kettler R, Colzi A. New therapeutic strategies in Parkinson’s disease: inhibition of MAO-B by Ro 19-6327 and of COMT by Ro 40-7592. New York: Plenum; 1991. [Google Scholar]
  • 3.Desimone R, Duncan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci. 1995;18:193–222. doi: 10.1146/annurev.ne.18.030195.001205. [DOI] [PubMed] [Google Scholar]
  • 4.Badre D, Wagner A. Selection, integration, and conflict monitoring; assessing the nature and generality of prefrontal cognitive control mechanisms. Neuron. 2004;41:473–487. doi: 10.1016/s0896-6273(03)00851-1. [DOI] [PubMed] [Google Scholar]
  • 5.Lewis DA, Anderson S. The functional architecture of the prefrontal cortex and schizophrenia. Psychol Med. 1995;25:887–894. doi: 10.1017/s0033291700037375. [DOI] [PubMed] [Google Scholar]
  • 6.Lewis DA. The catecholaminergic innervation of primate prefrontal cortex. J Neural Transm Suppl. 1992;36:179–200. doi: 10.1007/978-3-7091-9211-5_9. [DOI] [PubMed] [Google Scholar]
  • 7.Curtis CE, D’Esposito M. The effects of prefrontal lesions on working memory performance and theory. Cogn Affect Behav Neurosci. 2004;4:528–539. doi: 10.3758/cabn.4.4.528. [DOI] [PubMed] [Google Scholar]
  • 8.Smiley JF, Goldman-Rakic P. Silver-enhanced diaminobenzidine-sulfide (SEDS): a technique for high-resolution immuno-electron microscopy demonstrated with monoamine immunoreactivity in monkey cerebral cortex and caudate. J Histochem Cytochem. 1993;41:1393–1404. doi: 10.1177/41.9.8354879. [DOI] [PubMed] [Google Scholar]
  • 9.Gao WJ, Krimer LS, Goldman-RaMc P. Presynaptic regulation of recurrent excitation by D1 receptors in prefrontal circuits. Proc Natl Acad Sci USA. 2001;98:295–300. doi: 10.1073/pnas.011524298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Arnsten A. Catecholamine regulation of the prefrontal cortex. J Psychopharmacol. 1997;11:151–162. doi: 10.1177/026988119701100208. [DOI] [PubMed] [Google Scholar]
  • 11.Elliott R, SahaMan BJ, Matthews K, Bannerjea A, Rimmer J, Robbins TW. Effects of methylphenidate on spatial working memory and planning in healthy young adults. Psychopharmacology(Berl) 1997;131:196–206. doi: 10.1007/s002130050284. [DOI] [PubMed] [Google Scholar]
  • 12.Nielsen EB, Scheel-Kruger J. Central nervous system stimulants: neuropharmacological mechanisms. Psychopharmacol Ser. 1988;4:57–72. doi: 10.1007/978-3-642-73223-2_5. [DOI] [PubMed] [Google Scholar]
  • 13.Seeman P, Madras B. Anti-hyperactivity medication: methylphenidate and amphetamine. Mol Psychiatry. 1998;3:386–396. doi: 10.1038/sj.mp.4000421. [DOI] [PubMed] [Google Scholar]
  • 14.Keefe RS, Silva SG, Perkins DO, Lieberman J. The effects of atypical antipsychotic drugs on neurocognitive impairment in schizophrenia: a review and meta-analysis. Schizophr Bull. 1999;25:201–222. doi: 10.1093/oxfordjournals.schbul.a033374. [DOI] [PubMed] [Google Scholar]
  • 15.Green MF, Marshall BD, Wirshing WC, Ames D, Marder SR, McGurk S, et al. Does risperidone improve verbal working memory in treatment-resistant schizophrenia? Am J Psychiatry. 1997;154:799–804. doi: 10.1176/ajp.154.6.799. [DOI] [PubMed] [Google Scholar]
  • 16.McGurk SR. The effects of clozapine on cognitive functioning in schizophrenia. J Clin Psychiatry. 1999;60:24–29. [PubMed] [Google Scholar]
  • 17.Kapur S, Agid O, Mizrahi R, Li M. How antipsychotics work-from receptors to reality. NeuroRx. 2006;3:10–21. doi: 10.1016/j.nurx.2005.12.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Ichikawa J, Kuroki T, Dai J, Meltzer H. Effect of antipsychotic drugs on extracellular serotonin levels in rat medial prefrontal cortex and nucleus accumbens. Eur J Pharmacol. 1998;35:163–171. doi: 10.1016/s0014-2999(98)00308-2. [DOI] [PubMed] [Google Scholar]
  • 19.Goff DC, Tsai G, Manoach DS, Coyle J. Dose-finding trial of D-cycloserine added to neuroleptics for negative symptoms in schizophrenia. Am J Psychiatry. 1995;52:1213–1215. doi: 10.1176/ajp.152.8.1213. [DOI] [PubMed] [Google Scholar]
  • 20.Goff DC, Herz L, Posever T, Shih V, Tsai G, Henderson DC, et al. A six-month, placebo-controlled trial of D-cycloserine coadministered with conventional antipsychotics in schizophrenia patients. Psychopharmacology (Berl) 2005;179:144–150. doi: 10.1007/s00213-004-2032-2. [DOI] [PubMed] [Google Scholar]
  • 21.Rosse RB, Fay-McCarthy M, Kendrick K, Davis RE, Deutsch S. D-cycloserine adjuvant therapy to molindone in the treatment of schizophrenia. Clin Neuropharmacol. 1996;19:444–450. doi: 10.1097/00002826-199619050-00008. [DOI] [PubMed] [Google Scholar]
  • 22.Rosse RB, Schwartz BL, Davis RE, Deutsch S. An NMDA intervention strategy in schizophrenia with “low-dose” milacemide. Clin Neuropharmacol. 1991;14:268–272. doi: 10.1097/00002826-199106000-00012. [DOI] [PubMed] [Google Scholar]
  • 23.Ingvar M, Ambros-Ingerson J, Davis M, Granger R, Kessler M, Rogers GA, et al. Enhancement by an ampakine of memory encoding in humans. Exp Neurol. 1997;146:553–559. doi: 10.1006/exnr.1997.6581. [DOI] [PubMed] [Google Scholar]
  • 24.Koob GF. Hedonic valence, dopamine and motivation. Mol Psychiatry. 1996;1:186–189. [PubMed] [Google Scholar]
  • 25.Braver TS, Barch DM, Cohen JD. Cognition and control in schizophrenia: a computational model of dopamine and prefrontal function. Biol Psychiatry. 1999;46:312–328. doi: 10.1016/s0006-3223(99)00116-x. [DOI] [PubMed] [Google Scholar]
  • 26.Sawaguchi T, Goldman-RaMc P. The role of D1-dopamine receptor in working memory: local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. J Neurophysiol. 1994;71:515–528. doi: 10.1152/jn.1994.71.2.515. [DOI] [PubMed] [Google Scholar]
  • 27.Fuster JM. The prefrontal cortex: anatomy, physiology and neuropsychology of the frontal lobe. Philadelphia: Lippincott-Raven Publishers; 1997. [Google Scholar]
  • 28.Bannon MJ, Roth R. Pharmacology of mesocortical dopamine neurons. Pharmacol Rev. 1983;35:53–68. [PubMed] [Google Scholar]
  • 29.Thierry AM, Tassin JP, Blanc G, GlowinsM J. Selective activation of mesocortical DA system by stress. Nature. 1976;263:242–244. doi: 10.1038/263242a0. [DOI] [PubMed] [Google Scholar]
  • 30.Mantz J, Thierry AM, Glowinski J. Effect of noxious tail pinch on the discharge rate of mesocortical and mesolimbic dopamine neurons: selective activation of the mesocortical system. Brain Res. 1989;476:377–381. doi: 10.1016/0006-8993(89)91263-8. [DOI] [PubMed] [Google Scholar]
  • 31.Garris PA, Collins LB, Jones SR, Wightman RM. Evoked extracellular dopamine in vivo in the medial prefrontal cortex. J Neurochem. 1993;61:637–647. doi: 10.1111/j.1471-4159.1993.tb02168.x. [DOI] [PubMed] [Google Scholar]
  • 32.Garris PA, Wightman RM. Distinct pharmacological regulation of evoked dopamine efflux in the amygdala and striatum of the rat in vivo. Synapse. 1995;20:269–279. doi: 10.1002/syn.890200311. [DOI] [PubMed] [Google Scholar]
  • 33.Sharp T, Zetterstrom T, Ungerstedt U. An in vivo study of dopamine release and metabolism in rat brain regions using intra-cerebral dialysis. J Neurochem. 1986;47:113–122. doi: 10.1111/j.1471-4159.1986.tb02838.x. [DOI] [PubMed] [Google Scholar]
  • 34.Chiodo LA, Bannon MJ, Grace AA, Roth RH, Bunney BS. Evidence for the absence of impulse-regulating somatodendritic and synthesis-modulating nerve terminal autoreceptors on subpopulations of mesocortical dopamine neurons. Neuroscience. 1984;12:1–16. doi: 10.1016/0306-4522(84)90133-7. [DOI] [PubMed] [Google Scholar]
  • 35.Nicholson C. Interaction between diffusion and Michaelis-Menten uptake of dopamine after iontophoresis in striatum. Biophys J. 1995;68:1699–1715. doi: 10.1016/S0006-3495(95)80348-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Giros B, Jaber M, Jones SR, Wightman RM, Caron MG. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature. 1996;379:606–612. doi: 10.1038/379606a0. [DOI] [PubMed] [Google Scholar]
  • 37.Carboni E, Tanda GL, Frau R, Di Chiara G. Blockade of the noradrenaline carrier increases extracellular dopamine concentrations in the prefrontal cortex: evidence that dopamine is taken up in vivo by noradrenergic terminals. J Neurochem. 1990;55:1067–1070. doi: 10.1111/j.1471-4159.1990.tb04599.x. [DOI] [PubMed] [Google Scholar]
  • 38.Cenci MA, Kaien P, Mandel RJ, Bjorklund A. Regional differences in the regulation of dopamine and noradrenaline release in medial frontal cortex, nucleus accumbens and caudate-putamen: a microdialysis study in the rat. Brain Res. 1992;581:217–228. doi: 10.1016/0006-8993(92)90711-h. [DOI] [PubMed] [Google Scholar]
  • 39.Moghaddam B, Bunney B. Differential effect of cocaine on extracellular dopamine levels in rat medial prefrontal cortex and nucleus accumbens: comparison to amphetamine. Synapse. 1989;4:156–161. doi: 10.1002/syn.890040209. [DOI] [PubMed] [Google Scholar]
  • 40.Karoum F, Chrapusta SJ, Egan M. 3-Methoxytyramine is the major metabolite of released dopamine in the rat frontal cortex: reassessment of the effects of antipsychotics on the dynamics of dopamine release and metabolism in the frontal cortex, nucleus accumbens, and striatum by a simple two pool model. J Neurochem. 1994;63:972–979. doi: 10.1046/j.1471-4159.1994.63030972.x. [DOI] [PubMed] [Google Scholar]
  • 41.Di Chiara G, Tanda GL, Frau R, Carboni E. Heterologous monoamine reuptake: lack of transmitter specificity of neuron-specific carriers. Neurochem Int. 1992;20:231S–235S. [PubMed] [Google Scholar]
  • 42.Moron JA, Brockington A, Wise RA, Rocha BA, Hope B. Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: evidence from knock-out mouse lines. J Neurosci. 2002;22:389–395. doi: 10.1523/JNEUROSCI.22-02-00389.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Mundorf ML, Joseph JD, Austin CM, Caron MG, Wightman R. Catecholamine release and uptake in the mouse prefrontal cortex. J Neurochem. 2001;79:130–142. doi: 10.1046/j.1471-4159.2001.00554.x. [DOI] [PubMed] [Google Scholar]
  • 44.Paspalas CD, Goldman-Rakic P. Microdomains for dopamine volume neurotransmission in primate prefrontal cortex. J Neurosci. 2004;24:5292–5300. doi: 10.1523/JNEUROSCI.0195-04.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Axelrod J, Tomchick R. Enzymatic O-methylation of epinephrine and other catechols. J Biol Chem. 1958;233:702–705. [PubMed] [Google Scholar]
  • 46.Salminen M, Lundstrom K, Tilgmann C, Savolainen R, Kalkkinen N, Ulmanen I. Molecular cloning and characterization of rat liver catechol-O-methyltransferase. Gene. 1990;93:241–247. doi: 10.1016/0378-1119(90)90231-f. [DOI] [PubMed] [Google Scholar]
  • 47.Bertocci B, Miggiano V, Da Prada M, Dembic Z, Lahm HW, Malherbe P. Human catechol-O-methyltransferase: cloning and expression of the membrane-associated form. Proc Natl Acad Sci USA. 1991;88:1416–1420. doi: 10.1073/pnas.88.4.1416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Lundstrom K, Salminen M, Jalanko A, Savolainen R, Ulmanen I. Cloning and characterization of human placental catechol-O-methyltransferase cDNA. DNA Cell Biol. 1991;10:181–189. doi: 10.1089/dna.1991.10.181. [DOI] [PubMed] [Google Scholar]
  • 49.Lotta T, Vidgren J, Tilgmann C, Ulmanen I, Melen K, Julkunen I, et al. Kinetics of human soluble and membrane-bound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry. 1995;34:4202–4210. doi: 10.1021/bi00013a008. [DOI] [PubMed] [Google Scholar]
  • 50.Lundstrom K, Tenhunen J, Tilgmann C, Karhunen T, Panula P, Ulmanen I. Cloning, expression and structure of catechol-O-methyltransferase. Biochim Biophys Acta. 1995;1251:1–10. doi: 10.1016/0167-4838(95)00071-2. [DOI] [PubMed] [Google Scholar]
  • 51.Grossman MH, Emanuel BS, Budarf M. Chromosomal mapping of the human catechol-O-methyltransferase gene to 22q11.1-q11.2. Genomics. 1992;12:822–825. doi: 10.1016/0888-7543(92)90316-k. [DOI] [PubMed] [Google Scholar]
  • 52.Winqvist R, Lundstrom K, Salminen M, Laatikainen M, Ulmanen I. The human catechol-O-methyltransferase (COMT) gene maps to band q11.2 of chromosome 22 and shows a frequent RFLP with BglI. Cytogenet Cell Genet. 1992;59:253–257. doi: 10.1159/000133262. [DOI] [PubMed] [Google Scholar]
  • 53.Gogos J, Morgan M, Luine V, Santha M, Ogawa S, Pfaff D, et al. Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci USA. 1998;95:9991–9996. doi: 10.1073/pnas.95.17.9991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Huotari M, Gogos JA, Karayiorgou M, Koponen O, Forsberg M, Raasmaja A, et al. Brain catecholamine metabolism in catechol-O-methyltransferase (COMT)-deficient mice. Eur J Neurosci. 2002;15:246–256. doi: 10.1046/j.0953-816x.2001.01856.x. [DOI] [PubMed] [Google Scholar]
  • 55.Matsumoto M, Weickert CS, Beltaifa S, Kolachana B, Chen J, Hyde TM, et al. Catechol O-methyltransferase (COMT) mRNA expression in the dorsolateral prefrontal cortex of patients with schizophrenia. Neuropsychopharmacology. 2003;28:1521–1530. doi: 10.1038/sj.npp.1300218. [DOI] [PubMed] [Google Scholar]
  • 56.Lewis DA, Melchitzky DS, Sesack SR, Whitehead RE, Auh S, Sampson A. Dopamine transporter immunoreactivity in monkey cerebral cortex: regional, laminar, and ultrastructural localization. J Comp Neurol. 2001;432:119–136. doi: 10.1002/cne.1092. [DOI] [PubMed] [Google Scholar]
  • 57.Mazei MS, Pluto CP, Kirkbride B, Pehek EA. Effects of catecholamine uptake blockers in the caudate-putamen and subregions of the medial prefrontal cortex of the rat. Brain Res. 2002;936:58–67. doi: 10.1016/s0006-8993(02)02542-8. [DOI] [PubMed] [Google Scholar]
  • 58.Sesack SR, Hawrylak VA, Melchitzky DS, Lewis DA. Dopamine innervation of a subclass of local circuit neurons in monkey prefrontal cortex: ultrastructural analysis of tyrosine hydroxylase and parvalbumin immunoreactive structures. Cereb Cortex. 1998;8:614–622. doi: 10.1093/cercor/8.7.614. [DOI] [PubMed] [Google Scholar]
  • 59.Wayment HK, Schenk JO, Sorg BA. Characterization of extracellular dopamine clearance in the medial prefrontal cortex: role of monoamine uptake and monoamine oxidase inhibition. J Neurosci. 2001;21:35–44. doi: 10.1523/JNEUROSCI.21-01-00035.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Weinshilboum R, Raymond F. Variations in catechol-O-methyltransferase activity in inbred strains of rats. Neuropharmacology. 1977;16:703–706. doi: 10.1016/0028-3908(77)90124-1. [DOI] [PubMed] [Google Scholar]
  • 61.Spielman RS, Weinshilboum R. Genetics of red cell COMT activity: analysis of thermal stability and family data. Am J Med Genet. 1981;10:279–290. doi: 10.1002/ajmg.1320100311. [DOI] [PubMed] [Google Scholar]
  • 62.Boudikova B, Szumlanski C, Maidak B, Weinshilboum R. Human liver catechol-O-methyltransferase pharmacogenetics. Clin Pharmacol Ther. 1990;48:381–389. doi: 10.1038/clpt.1990.166. [DOI] [PubMed] [Google Scholar]
  • 63.Aksoy S, Klener J, Weinshilboum R. Catechol O-methyltransferase pharmacogenetics: photoaffinity labelling and western blot analysis of human liver samples. Pharmacogenetics. 1993;3:116–122. doi: 10.1097/00008571-199304000-00008. [DOI] [PubMed] [Google Scholar]
  • 64.Reilly DK, Rivera-Calimlim L, Van Dyke D. Catechol-O-methyltransferase activity: a determinant of levodopa response. Clin Pharmacol Ther. 1980;28:278–286. doi: 10.1038/clpt.1980.161. [DOI] [PubMed] [Google Scholar]
  • 65.Campbell NR, Dunnette JH, Mwaluko G, Van Loon J, Weinshilboum RM. Platelet phenol sulfotransferase and erythrocyte catechol-O-methyltransferase activities: correlation with methyldopa metabolism. Clin Pharmacol Ther. 1984;35:55–63. doi: 10.1038/clpt.1984.9. [DOI] [PubMed] [Google Scholar]
  • 66.Goldstein M, Lieberman A. The role of the regulatory enzymes of catecholamine synthesis in Parkinson’s disease. Neurology. 1992;42(Suppl 4):41–48. [PubMed] [Google Scholar]
  • 67.Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M, Melhem S, et al. Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet. 2004;75:807–821. doi: 10.1086/425589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Kimberg DY, D’Esposito M, Farah M. Effects of bromocriptine on human subjects depend on working memory capacity. Neuroreport. 1997;8:3581–3585. doi: 10.1097/00001756-199711100-00032. [DOI] [PubMed] [Google Scholar]
  • 69.Williams GV, Goldman-Rakic PS. Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature. 1995;376:572–575. doi: 10.1038/376572a0. [DOI] [PubMed] [Google Scholar]
  • 70.Arnsten AF, Goldman-Rakic P. Analysis of α-2 adrenergic agonist effects on the delayed nonmatch-to-sample performance of aged rhesus monkeys. Neurobiol Aging. 1990;11:583–590. doi: 10.1016/0197-4580(90)90021-q. [DOI] [PubMed] [Google Scholar]
  • 71.Arnsten AF, Cai JX, Murphy BL, Goldman-Rakic P. Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology (Berl) 1994;116:143–151. doi: 10.1007/BF02245056. [DOI] [PubMed] [Google Scholar]
  • 72.Arnsten AF, Goldman-Rakic P. Noise stress impairs prefrontal cortical cognitive function in monkeys: evidence for a hyperdopaminergic mechanism. Arch Gen Psychiatry. 1998;55:362–368. doi: 10.1001/archpsyc.55.4.362. [DOI] [PubMed] [Google Scholar]
  • 73.Mattay VS, Callicott JH, Bertolino A, Heaton I, Frank JA, Coppola R, et al. Effects of dextroamphetamine on cognitive performance and cortical activation. Neuroimage. 2000;12:268–275. doi: 10.1006/nimg.2000.0610. [DOI] [PubMed] [Google Scholar]
  • 74.Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE, et al. Effect of COMT Va1108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA. 2001;98:6917–6922. doi: 10.1073/pnas.111134598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Diaz-Asper CM, Goldberg TE. COMT polymorphism and prefrontal cognitive function. NeuroRx. 2006;3:97–105. doi: 10.1016/j.nurx.2005.12.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Kneavel M, Gogos J, Karayiorgou K, Luine V. Interaction of COMT gene deletion and environment on cognition. Proceedings of the Society for Neuroscience 30th Annual Meeting, New Orleans, LA, Abstract 571.20, 2000.
  • 77.Guldberg HC, Marsden CA. Catechol-O-methyl transferase: pharmacological aspects and physiological role. Pharmacol Rev. 1975;27:135–206. [PubMed] [Google Scholar]
  • 78.Zurcher G, Colzi A, Da Prada M. Ro 40-7592: inhibition of COMT in rat brain and extracerebral tissues. J Neural Transm Suppl. 1990;32:375–380. doi: 10.1007/978-3-7091-9113-2_51. [DOI] [PubMed] [Google Scholar]
  • 79.Zurcher G, Keller HH, Kettler R, Borgulya J, Bonetti EP, Eigenmann R, et al. Ro 40-7592, a novel, very potent, and orally active inhibitor of catechol-O-methyltransferase: a pharmacological study in rats. Adv Neurol. 1990;53:497–503. [PubMed] [Google Scholar]
  • 80.Zurcher G, Dingemanse J, Da Prada M. Ro-40-7592, a potent inhibitor of extracerebral and brain catechol-O-methyltransferase: preclinical and clinical findings. Rome: John Libbey S.R.L.; 1991. [Google Scholar]
  • 81.Ceravolo R, Piccini P, Bailey DL, Jorga KM, Bryson H, Brooks DJ. 18F-dopa PET evidence that tolcapone acts as a central COMT inhibitor in Parkinson’s disease. Synapse. 2002;43:201–207. doi: 10.1002/syn.10034. [DOI] [PubMed] [Google Scholar]
  • 82.Stahl SM. Finding what you are not looking for: strategies for developing novel treatments in psychiatry. NeuroRx. 2006;3:3–9. doi: 10.1016/j.nurx.2005.12.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Khromova I, Rauhala P, Zolotov N, M“nnist” P. Tolcapone, an inhibitor of catechol O-methyltransferase, counteracts memory deficits caused by bilateral cholinotoxin lesions of the nucleus basalis of Meynert. Neuroreport. 1995;6:1219–1222. doi: 10.1097/00001756-199505300-00036. [DOI] [PubMed] [Google Scholar]
  • 84.Liljequist R, Haapalinna A, Ahlander M, Li YH, Mannisto PT. Catechol O-methyltransferase inhibitor tolcapone has minor influence on performance in experimental memory models in rats. Behav Brain Res. 1997;82:195–202. doi: 10.1016/s0166-4328(97)80989-8. [DOI] [PubMed] [Google Scholar]
  • 85.Kaakkola S, Gordin A, J“rvinen M, Wikberg T, Schultz E, Nissinen E, et al. Effect of a novel catechol-O-methyltransferase inhibitor, nitecapone, on the metabolism of L-DOPA in healthy volunteers. Clin Neuropharmacol. 1990;13:436–447. doi: 10.1097/00002826-199010000-00005. [DOI] [PubMed] [Google Scholar]
  • 86.Ker“nen T, Gordin A, Harjola VP, Karlsson M, Korpela K, Pentik”inen PJ, et al. The effect of catechol-O-methyl transferase inhibition by entacapone on the pharmacokinetics and metabolism of levodopa in healthy volunteers. Clin Neuropharmacol. 1993;16:145–156. doi: 10.1097/00002826-199304000-00007. [DOI] [PubMed] [Google Scholar]
  • 87.Gasparini M, Fabrizio E, Bonifati V, Meco G. Cognitive improvement during Tolcapone treatment in Parkinson’s disease. J Neural Transm. 1997;104:887–894. doi: 10.1007/BF01285556. [DOI] [PubMed] [Google Scholar]
  • 88.Fava M, Rosenbaum JF, Kolsky A, Alpert JE, Nierenberg AA, Spillman M, et al. Open study of the catechol-o-methyltransferase inhibitor tolcapone in major depressive disorder. J Clin Psychopharm. 1999;19:329–335. doi: 10.1097/00004714-199908000-00008. [DOI] [PubMed] [Google Scholar]
  • 89.Apud JA, Mattay V, Das B, Iudicello J, Akbar N, Egan M, et al. COMT genotype and cognition: effects of tolcapone on working memory and fMRI in normal volunteers. Proceedings of the 60th Annual Meeting of the Society of Biological Psychiatry, Atlanta, GA, Abstract 18, 2005.
  • 90.Arnulf I, Homeyer P, Garma L, Whitelaw WA, Derenne J. Modafinil in obstructive sleep apnea-hypopnea syndrome: a pilot study in 6 patients. Respiration. 1997;64:159–161. doi: 10.1159/000196661. [DOI] [PubMed] [Google Scholar]
  • 91.Besset A, Chetrit M, Carlander B, Billiard M. Use of modafinil in the treatment of narcolepsy: a long term follow-up study. Neurophysiol Clin. 1996;26:60–66. doi: 10.1016/0987-7053(96)81535-8. [DOI] [PubMed] [Google Scholar]
  • 92.Billiard M, Merle C, Carlander B, Ondze B, Alvarez D, Besset A. Idiopathic hypersomnia. Psychiatry Clin Neurosci. 1998;52:125–129. doi: 10.1111/j.1440-1819.1998.tb00987.x. [DOI] [PubMed] [Google Scholar]
  • 93.Duteil J, Rambert FA, Pessonnier J, Hermant JF, Gombert R, Assous E. Central α1-adrenergic stimulation in relation to the behaviour stimulating effect of modafinil; studies with experimental animals. Eur J Pharmacol. 1990;180:49–58. doi: 10.1016/0014-2999(90)90591-s. [DOI] [PubMed] [Google Scholar]
  • 94.Pierard C, Satabin P, Lagarde D, Barrere B, Guezennec CY, Menu JP, et al. Effects of a vigilance-enhancing drug, modafinil, on rat brain metabolism: a 2D COSY 1H-NMR study. Brain Res. 1995;693:251–256. doi: 10.1016/0006-8993(95)00711-x. [DOI] [PubMed] [Google Scholar]
  • 95.Perez de la Mora M, Aguilar-Garcia A, Ramon-Frias T, Ramirez-Ramirez R, Mendez-Franco J, Rambert F, et al. Effects of the vigilance promoting drug modafinil on the synthesis of GABA and glutamate in slices of rat hypothalamus. Neurosci Lett. 1999;259:181–185. doi: 10.1016/s0304-3940(98)00905-7. [DOI] [PubMed] [Google Scholar]
  • 96.Ferraro L, Antonelli T, Tanganelli S, O’Connor WT, Perez de la Mora M, Mendez-Franco J, et al. The vigilance promoting drug modafinil increases extracellular glutamate levels in the medial preoptic area and the posterior hypothalamus of the conscious rat: prevention by local GABAA receptor blockade. Neuropsychopharmacology. 1999;20:346–356. doi: 10.1016/S0893-133X(98)00085-2. [DOI] [PubMed] [Google Scholar]
  • 97.Wisor JP, Nishino S, Sora I, Uhl GH, Mignot E, Edgar DM. Dopaminergic role in stimulant-induced wakefulness. J Neurosci. 2001;21:1787–1794. doi: 10.1523/JNEUROSCI.21-05-01787.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.de Saint Hilaire Z, Orosco M, Rouch C, Blanc G, Nicolaidis S. Variations in extracellular monoamines in the prefrontal cortex and medial hypothalamus after modafinil administration: a microdialysis study in rats. Neuroreport. 2001;12:3533–3537. doi: 10.1097/00001756-200111160-00032. [DOI] [PubMed] [Google Scholar]
  • 99.Beracochea D, Cagnard B, Celerier A, le Merrer J, Peres M, Pierard C. First evidence of a delay-dependent working memory-enhancing effect of modafinil in mice. Neuroreport. 2001;12:375–378. doi: 10.1097/00001756-200102120-00038. [DOI] [PubMed] [Google Scholar]
  • 100.Turner DC, Robbins TW, Clark L, Aron AR, Dowson J, Sahakian BJ. Cognitive enhancing effects of modafinil in healthy volunteers. Psychopharmacology (Berl) 2003;165:26026–26019. doi: 10.1007/s00213-002-1250-8. [DOI] [PubMed] [Google Scholar]
  • 101.Tafti M, Dauvilliers Y. Pharmacogenomics in the treatment of narcolepsy. Pharmacogenomics. 2003;4:23–33. doi: 10.1517/phgs.4.1.23.22590. [DOI] [PubMed] [Google Scholar]
  • 102.Kratochvil CJ, Vaughan BS, Harrington MJ, Burke W. Atomoxetine: a selective noradrenaline reuptake inhibitor for the treatment of attention-deficit/hyperactivity disorder. Expert Opin Pharmacother. 2003;4:1165–1174. doi: 10.1517/14656566.4.7.1165. [DOI] [PubMed] [Google Scholar]
  • 103.Wong D, Threlkeld PG, Best KL, Bymaster FP. A new inhibitor of norepinephrine uptake devoid of affinity for receptors in rat brain. J Pharmacol Exp Ther. 1982;222:61–65. [PubMed] [Google Scholar]
  • 104.Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH, et al. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology. 2002;27:699–711. doi: 10.1016/S0893-133X(02)00346-9. [DOI] [PubMed] [Google Scholar]
  • 105.Stahl SM. Selective NRIs are smart drugs: exploiting regionally selective actions on both dopamine and norepinephrine to enhance cognition. J Clin Psychiatry. 2003;64:110–111. doi: 10.4088/jcp.v64n0201. [DOI] [PubMed] [Google Scholar]
  • 106.Michelson D, Allen AJ, Busner J, Casat C, Dunn D, Kratochvil C, et al. Once-daily atomoxetine treatment for children and adolescents with attention deficit hyperactivity disorder: a randomized, placebo-controlled study. Am J Psychiatry. 2002;159:1896–1901. doi: 10.1176/appi.ajp.159.11.1896. [DOI] [PubMed] [Google Scholar]
  • 107.Pierce RC, Kalivas P. A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res Brain Res Rev. 1997;25:192–216. doi: 10.1016/s0165-0173(97)00021-0. [DOI] [PubMed] [Google Scholar]
  • 108.Mattay VS, Goldberg TE, Fera F, Hariri AR, Tessitore A, Egan MF, et al. Catechol O-methyltransferase vall58-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci USA. 2003;100:6186–6191. doi: 10.1073/pnas.0931309100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Castner SA, Goldman-Rakic PS, Williams GV. Animal models of working memory: insights for targeting cognitive dysfunction in schizophrenia. Psychopharmacology (Berl) 2004;174:111–125. doi: 10.1007/s00213-003-1710-9. [DOI] [PubMed] [Google Scholar]
  • 110.Goldman-Rakic PS, Lidow MS, Smiley JF, Williams MS. The anatomy of dopamine in monkey and human prefrontal cortex. J Neural Transm Suppl. 1992;36:163–177. doi: 10.1007/978-3-7091-9211-5_8. [DOI] [PubMed] [Google Scholar]
  • 111.Granon S, Passetti F, Thomas KL, Dalley JW, Everitt BJ, Robbins T. Enhanced and impaired attentional performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex. J Neurosci. 2000;20:1208–1215. doi: 10.1523/JNEUROSCI.20-03-01208.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Didriksen M. Effects of antipsychotics on cognitive behaviour in rats using the delayed non-match to position paradigm. Eur J Pharmacol. 1995;281:241–250. doi: 10.1016/0014-2999(95)00242-d. [DOI] [PubMed] [Google Scholar]
  • 113.Mattay VS, Berman KF, Ostrem JL, Esposito G, Van Horn JD, Bigelow LB, et al. Dextroamphetamine enhances “neural network-specific” physiological signals: a positron-emission tomography rCBF study. J Neurosci. 1996;16:4816–4822. doi: 10.1523/JNEUROSCI.16-15-04816.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114.Davidson M, Harvey PD, Bergman RL, Powchik P, Kaminsky R, Losonczy MF, et al. Effects of the D-1 agonist SKF-38393 combined with haloperidol in schizophrenic patients. Arch Gen Psychiatry. 1990;47:190–191. doi: 10.1001/archpsyc.1990.01810140090014. [DOI] [PubMed] [Google Scholar]
  • 115.Steele TO, Hodges DB, Levesque TR, Locke KW. D1 agonist dihydrexidine releases acetylcholine and improves cognitive performance in rats. Pharmacol Biochem Behav. 1997;58:477–483. doi: 10.1016/s0091-3057(97)00290-6. [DOI] [PubMed] [Google Scholar]
  • 116.Michaelides MR, Hong Y, DiDomenico S, Asin KE, Britton DR, Lin CW, et al. (5aR,11bS)-4,5,5a,6,7,11b-hexahydro-2-propyl-3-thia-5-azacyclopent-1-ena[c]-phenanthrene-9,10-diol (A-86929): a potent and selective dopamine D1 agonist that maintains behavioral efficacy following repeated administration and characterization of its diacetyl prodnig (ABT-431) J Med Chem. 1995;38:3445–3447. doi: 10.1021/jm00018a002. [DOI] [PubMed] [Google Scholar]
  • 117.Shiosaki K, Jenner P, Asin KE, Britton DR, Lin CW, Michaelides M, et al. ABT-431: the diacetyl prodrug of A-86929, a potent and selective dopamine D1 receptor agonist: in vitro characterization and effects in animal models of Parkinson’s disease. J Pharmacol Exp Ther. 1996;276:150–160. [PubMed] [Google Scholar]
  • 118.Giardina WJ, Williams M. Adrogolide HC1 (ABT-431; DAS-431), a prodrug of the dopamine D1 receptor agonist, A-86929: preclinical pharmacology and clinical data. CNS Drug Rev. 2001;7:305–316. doi: 10.1111/j.1527-3458.2001.tb00201.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119.Castner SA, Williams GV, Goldman-Rakic PS. Reversal of anti-psychotic-induced working memory deficits by short-term dopamine D1 receptor stimulation. Science. 2000;287:2020–2022. doi: 10.1126/science.287.5460.2020. [DOI] [PubMed] [Google Scholar]
  • 120.Self DW, Karanian DA, Spencer J. Effects of the novel D1 dopamine receptor agonist ABT-431 on cocaine self-administration and reinstatement. NY Acad Sci. 2000;909:133–144. doi: 10.1111/j.1749-6632.2000.tb06679.x. [DOI] [PubMed] [Google Scholar]
  • 121.Haney M, Foltin RW, Fischman M. Effects of pergolide on intravenous cocaine self-administration in men and women. Psychopharmacology (Berl) 1998;137:15–24. doi: 10.1007/s002130050588. [DOI] [PubMed] [Google Scholar]
  • 122.Callicott JH, Weinberger DR. Neuropsychiatric dynamics: the study of mental illness using functional magnetic resonance imaging. Eur J Radiol. 1999;30:95–104. doi: 10.1016/s0720-048x(99)00048-0. [DOI] [PubMed] [Google Scholar]
  • 123.Goldman-Rakic PS. The physiological approach: functional architecture of working memory and disordered cognition in schizophrenia. Biol Psychiatry. 1999;46:650–661. doi: 10.1016/s0006-3223(99)00130-4. [DOI] [PubMed] [Google Scholar]
  • 124.Bunney WE, Bunney BG. Evidence for a compromised dorsolateral prefrontal cortical parallel circuit in schizophrenia. Brain Res Brain Res Rev. 2000;31:138–146. doi: 10.1016/s0165-0173(99)00031-4. [DOI] [PubMed] [Google Scholar]
  • 125.Harvey PD. Conference report: The Seventh Biennial Mount Sinai conference on cognition in schizophrenia. Schizophr Bull. 2005;31:895–897. doi: 10.1093/schbul/sbi067. [DOI] [PubMed] [Google Scholar]
  • 126.Bowie CR, Harvey PD. Cognition in schizophrenia: impairments, determinants, and functional importance. Psychiatr Clin North Am. 2005;28:613–633. doi: 10.1016/j.psc.2005.05.004. [DOI] [PubMed] [Google Scholar]
  • 127.Barch DM, Carter C. Selective attention in schizophrenia: relationship to verbal working memory. Schizophr Res. 1998;33:53–61. doi: 10.1016/s0920-9964(98)00064-4. [DOI] [PubMed] [Google Scholar]
  • 128.Goldberg TE, Gold JM, Coppola R, Weinberger DR. Unnatural practices, unspeakable actions: a study of delayed auditory feedback in schizophrenia. Am J Psychiatry. 1997;154:858–860. doi: 10.1176/ajp.154.6.858. [DOI] [PubMed] [Google Scholar]
  • 129.Park S, Holzman P. Schizophrenics show spatial working memory deficits. Arch Gen Psychiatry. 1992;49:975–982. doi: 10.1001/archpsyc.1992.01820120063009. [DOI] [PubMed] [Google Scholar]
  • 130.Andreasen NC, O’Leary DS, Cizadlo T, Arndt S, Rezai K, Ponto LL, et al. Schizophrenia and cognitive dysmetria: a positronemission tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry. Proc Natl Acad Sci USA. 1996;93:9985–9990. doi: 10.1073/pnas.93.18.9985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131.Berman KF, Torrey EF, Daniel DG, Weinberger D. Regional cerebral blood flow in monozygotic twins discordant and concordant for schizophrenia. Arch Gen Psychiatry. 1992;49:927–934. doi: 10.1001/archpsyc.1992.01820120015004. [DOI] [PubMed] [Google Scholar]
  • 132.Callicott JH, Ramsey NF, Tallent K, Bertolino A, Knable MB, Coppola R, et al. Functional magnetic resonance imaging brain mapping in psychiatry: methodological issues illustrated in a study of working memory in schizophrenia. Neuropsychopharmacology. 1998;18:186–196. doi: 10.1016/S0893-133X(97)00096-1. [DOI] [PubMed] [Google Scholar]
  • 133.Catafau AM, Parellada E, Lomena FJ, Bernardo M, Pavia J, Ros D, et al. Prefrontal and temporal blood flow in schizophrenia: resting and activation technetium-99m-HMPAO SPECT patterns in young neuroleptic-naive patients with acute disease. J Nucl Med. 1994;35:935–941. [PubMed] [Google Scholar]
  • 134.Curtis VA, Bullmore ET, Brammer MJ, Wright IC, Williams SC, Morris RG, et al. Attenuated frontal activation during a verbal fluency task in patients with schizophrenia. Am J Psychiatry. 1998;155:1056–1063. doi: 10.1176/ajp.155.8.1056. [DOI] [PubMed] [Google Scholar]
  • 135.Kawasaki Y, Maeda Y, Suzuki M, Urata K, Higashima M, Kiba K, et al. SPECT analysis of regional cerebral blood flow changes in patients with schizophrenia during the Wisconsin Card Sorting Test. Schizophr Res. 1993;10:109–116. doi: 10.1016/0920-9964(93)90045-k. [DOI] [PubMed] [Google Scholar]
  • 136.Weinberger DR, Berman KF, Zec RF. Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. Arch Gen Psychiatry. 1986;43:114–124. doi: 10.1001/archpsyc.1986.01800020020004. [DOI] [PubMed] [Google Scholar]
  • 137.Weinberger DR, Berman KF, Torrey EF. Correlations between abnormal hippocampal morphology and prefrontal physiology in schizophrenia. Clin Neuropharmacol. 1992;15(Suppl 1):393A–394A. doi: 10.1097/00002826-199201001-00205. [DOI] [PubMed] [Google Scholar]
  • 138.Weinberger DR, Berman KF, Daniel DG. Mesoprefrontal cortical dopaminergic activity and prefrontal hypofunction in schizophrenia. Clin Neuropharmacol. 1992;15(Suppl 1):568A–569A. doi: 10.1097/00002826-199201001-00296. [DOI] [PubMed] [Google Scholar]
  • 139.Callicott JH, Bertolino A, Mattay VS, Langheim FJ, Duyn J, Coppola R, et al. Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cereb Cortex. 2000;10:1078–1092. doi: 10.1093/cercor/10.11.1078. [DOI] [PubMed] [Google Scholar]
  • 140.Manoach DS, Press DZ, Thangaraj V, Searl MM, Goff DC, Halpern E, et al. Schizophrenic subjects activate dorsolateral prefrontal cortex during a working memory task, as measured by fMRI. Biol Psychiatry. 1999;45:1128–1137. doi: 10.1016/s0006-3223(98)00318-7. [DOI] [PubMed] [Google Scholar]
  • 141.Manoach DS, Gollub RL, Benson ES, Searl MM, Goff DC, Halpern E, et al. Schizophrenic subjects show aberrant fMRI activation of dorsolateral prefrontal cortex and basal ganglia during working memory performance. Biol Psychiatry. 2000;48:99–109. doi: 10.1016/s0006-3223(00)00227-4. [DOI] [PubMed] [Google Scholar]
  • 142.Perlstein WM, Carter CS, Noll DC, Cohen J. Relation of prefrontal cortex dysfunction to working memory and symptoms in schizophrenia. Am J Psychiatry. 2001;158:1105–1113. doi: 10.1176/appi.ajp.158.7.1105. [DOI] [PubMed] [Google Scholar]
  • 143.Okubo Y, Suhara T, Suzuki K, Kobayashi K, Inoue O, Terasaki O, et al. Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature. 1997;385:634–636. doi: 10.1038/385634a0. [DOI] [PubMed] [Google Scholar]
  • 144.Abi-Dargham A, Mawlawi O, Lombardo I, Gil R, Martinez D, Huang Y, et al. Prefrontal dopamine D1 receptors and working memory in schizophrenia. J Neurosci. 2002;22:3708–3719. doi: 10.1523/JNEUROSCI.22-09-03708.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145.Li YH, Wirth T, Huotari M, Laitinen K, MacDonald E, Mannisto PT. No change of brain extracellular catecholamine levels after acute catechol-O-methyltransferase inhibition: a microdialysis study in anaesthetized rats. Eur J Pharmacol. 1998;356:127–137. doi: 10.1016/s0014-2999(98)00524-x. [DOI] [PubMed] [Google Scholar]
  • 146.Goldberg TE, Bigelow LB, Weinberger DR, Daniel DG, Kleinman JE. Cognitive and behavioral effects of the coadministration of dextroamphetamine and haloperidol in schizophrenia. Am J Psychiatry. 1991;148:78–84. doi: 10.1176/ajp.148.1.78. [DOI] [PubMed] [Google Scholar]
  • 147.Daniel DG, Weinberger DR, Jones DW, Zigun JR, Coppola R, Handel S, et al. The effect of amphetamine on regional cerebral blood flow during cognitive activation in schizophrenia. J Neurosci. 1991;11:1907–1917. doi: 10.1523/JNEUROSCI.11-07-01907.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from NeuroRx are provided here courtesy of Am. Soc. for Experimental NeuroTherapeutics

RESOURCES