Skip to main content
NeuroRx logoLink to NeuroRx
. 2012 Sep 5;3(4):428–438. doi: 10.1016/j.nurx.2006.07.004

Activity-based therapies

Alexander W Dromerick 1,3,, Peter S Lum 2,3, Joseph Hidler 2,3
PMCID: PMC3593413  PMID: 17012056

Summary

Therapeutic activity is a mainstay of clinical neurorehabilitation, but is typically unstructured and directed at compensation rather than restoration of central nervous system function. Newer activity-based therapies (ABTs) are in early stages of development and testing. The ABTs attempt to restore function via standardized therapeutic activity based on principles of experimental psychology, exercise physiology, and neuroscience. Three of the best developed ABTs are constraint-induced therapy, robotic therapy directed at the hemiplegic arm, and treadmill training techniques aimed at improving gait in persons with stroke and spinal cord injury. These treatments appear effective in improving arm function and gait, but they have not yet been clearly demonstrated to be more effective than equal amounts of traditional techniques. Resistance training is clearly demonstrated to improve strength in persons with stroke and brain injury, and most studies show that it does not increase hypertonia. Clinical trials of ABTs face several methodological challenges. These challenges include defining dosage, standardizing treatment parameters across subjects and within treatment sessions, and determining what constitutes clinically significant treatment effects. The long-term goal is to develop prescriptive ABT, where specific activities are proven to treat specific motor system disorders. Activity-based therapies are not a cure, but are likely to play an important role in future treatment cocktails for stroke and spinal cord injury.

Key Words: Rehabilitation, cerebrovascular accident, spinal cord injuries, clinical trials, review

References

  • 1.The history of physiatry (online). Available at http://www.physiatry. org/field/index.html. Accessed Date: May 1, 2006.
  • 2.Roth EJ. The elderly stroke patient: principles and practices of rehabilitation management. Top Geriatr Rehabil. 1988;3:27–61. [Google Scholar]
  • 3.Cauraugh JH, Kim SB. Stroke motor recovery: active neuromuscular stimulation and repetitive practice schedules. J Neurol Neurosurg Psychiatry. 2003;74:1562–1566. doi: 10.1136/jnnp.74.11.1562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Thielman GT, Dean CM, Gentile AM. Rehabilitation of reaching after stroke: task-related training versus progressive resistive exercise. Arch Phys Med Rehabil. 2004;85:1613–1618. doi: 10.1016/j.apmr.2004.01.028. [DOI] [PubMed] [Google Scholar]
  • 5.Winstein CJ, Rose DK, Tan SM, Lewthwaite R, Chui HC, Azen SP. A randomized controlled comparison of upper-extremity rehabilitation strategies in acute stroke: a pilot study of immediate and long-term outcomes. Arch Phys Med Rehabil. 2004;85:620–628. doi: 10.1016/j.apmr.2003.06.027. [DOI] [PubMed] [Google Scholar]
  • 6.Schieber MH, Poliakov AV. Partial inactivation of the primary motor cortex hand area: effects on individuated finger movements. J Neurosci. 1998;18:9038–9054. doi: 10.1523/JNEUROSCI.18-21-09038.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Nudo RJ, Wise BM, SiFuentes F, Milliken GW. Neural substracts for the effects of rehabilitative training on motor recovery after ischemic infarct. Science. 1996;272:1791–1794. doi: 10.1126/science.272.5269.1791. [DOI] [PubMed] [Google Scholar]
  • 8.Nudo RJ, Milliken GW, Jenkins WN, Merzenich MM. Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J Neurosci. 1996;16:785–807. doi: 10.1523/JNEUROSCI.16-02-00785.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Kleim JA, Swain RA, Armstrong KA, Napper RMA, Jones TA, Greenough WT. Selective synaptic plasticity within the cerebellar cortex following complex motor skill learning. Neurobiol Learn Mem. 1998;69:274–289. doi: 10.1006/nlme.1998.3827. [DOI] [PubMed] [Google Scholar]
  • 10.Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A. Neuroplasticity changes in grey matter induced by training. Nature. 2004;427:311–312. doi: 10.1038/427311a. [DOI] [PubMed] [Google Scholar]
  • 11.Jorgensen HS, Nakayama H, Raaschou HO, Vive-Larsen J, Stoier M, Olsen TS. Outcome and time course of recovery in stroke. Part I: outcome. The Copenhagen Stroke Study. Arch Phys Med Rehabil. 1995;76:399–405. doi: 10.1016/S0003-9993(95)80567-2. [DOI] [PubMed] [Google Scholar]
  • 12.Kwakkel G, Wagenaar RC, Koelman TW, Lankhorst GJ, Koetsier JC. Effects of intensity of rehabilitation after stroke. Stroke. 1997;28:1550–1556. doi: 10.1161/01.STR.28.8.1550. [DOI] [PubMed] [Google Scholar]
  • 13.Langhome P, Wagenaar RC, Partridge C. Physiotherapy after stroke: more is better? Physiother Res Int. 1996;1:75–88. doi: 10.1002/pri.6120010204. [DOI] [PubMed] [Google Scholar]
  • 14.Kwakkel G, van Peppen R, Wagenaar RC, et al. Effects of augmented exercise therapy time after stroke: a meta-analysis. Stroke. 2004;35:2529–2539. doi: 10.1161/01.STR.0000143153.76460.7d. [DOI] [PubMed] [Google Scholar]
  • 15.Jette DU, Warren RL, Wirtalla C. The relation between therapy intensity and outcomes of rehabilitation in skilled nursing facilities. Arch Phys Med Rehabil. 2005;86:373–379. doi: 10.1016/j.apmr.2004.10.018. [DOI] [PubMed] [Google Scholar]
  • 16.Bode RK, Heinemann AW, Semik P, Mallinson T. Relative importance of rehabilitation therapy characteristics on functional outcomes for persons with stroke. Stroke. 2004;35:2537–2542. doi: 10.1161/01.STR.0000145200.02380.a3. [DOI] [PubMed] [Google Scholar]
  • 17.Chen CC, Heinemann AW, Granger CV, Linn RT. Functional gains and therapy intensity during subacute rehabilitation: a study of 20 facilities. Arch Phys Med Rehabil. 2002;83:1514–1523. doi: 10.1053/apmr.2002.35107. [DOI] [PubMed] [Google Scholar]
  • 18.Humm JL, Kozlowski DA, James DC, Gotts JE, Schallert T. Use-dependent exacerbation of brain damage occurs during an early post-lesion vulnerable period. Brain Res. 1998;783:286–292. doi: 10.1016/S0006-8993(97)01356-5. [DOI] [PubMed] [Google Scholar]
  • 19.Dromerick AW, Edwards DF, Hahn M. Does the application of constraint-induced movement therapy during acute rehabilitation reduce hemiparesis after ischemic stroke? Stroke. 2000;31:2984–2988. doi: 10.1161/01.STR.31.12.2984. [DOI] [PubMed] [Google Scholar]
  • 20.Taub E, Pidikiti RD, DeLuca SC, Crago JE, Toole JF, Good DC. Imaging in neurologic rehabilitation. New York: Demos; 1996. Effects of motor restriction of an unimpaired upper extremity and training on improving functional tasks and altering brain behaviors; pp. 133–154. [Google Scholar]
  • 21.Taub E, Miller NE, Novack TA, et al. Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehabil. 1993;74:347–354. [PubMed] [Google Scholar]
  • 22.Sterr A. Training-based interventions in motor rehabilitation after stroke: theoretical and clinical considerations. Behav Neurol. 2004;15:55–63. doi: 10.1155/2004/703746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.van Peppen RPS, Kwakkel G, Wood-Dauphinee S, Hendriks HJM, van der Wees PJ, Dekker J. The impact of physical therapy on functional outcomes after stroke: what’s the evidence? Clin Rehabil. 2004;18:833–862. doi: 10.1191/0269215504cr843oa. [DOI] [PubMed] [Google Scholar]
  • 24.Levine P, Page SJ. Modified constraint-induced therapy: a promising restorative outpatient therapy. Top Stroke Rehabil. 2004;11:1–10. doi: 10.1310/R4HN-51MW-JFYK-2JAN. [DOI] [PubMed] [Google Scholar]
  • 25.Tarkka IM, Pitkanen K, Sivenius J. Paretic hand rehabilitation with constraint-induced movement therapy after stroke. Am J Phys Med Rehabil. 2005;84:501–505. doi: 10.1097/01.phm.0000166881.71097.9d. [DOI] [PubMed] [Google Scholar]
  • 26.Dettmers C, Teske U, Hamzei F, Uswatte G, Taub E, Weiller C. Distributed form of constraint-induced movement therapy improves functional outcome and quality of life after stroke. Arch Phys Med Rehabil. 2005;86:204–209. doi: 10.1016/j.apmr.2004.05.007. [DOI] [PubMed] [Google Scholar]
  • 27.Kunkel A, Kopp B, Muller G, et al. Constraint induced movement therapy for motor recovery in chronic stroke patients. Arch Phys Med Rehabil. 1999;80:624–628. doi: 10.1016/S0003-9993(99)90163-6. [DOI] [PubMed] [Google Scholar]
  • 28.Miltner WHR, Bauder H, Sommer M, Dettmers C, Taub E. Effects of constraint-induced movement therapy on patients with chronic motor deficits after stroke: a replication. Stroke. 1999;30:586–592. doi: 10.1161/01.STR.30.3.586. [DOI] [PubMed] [Google Scholar]
  • 29.Taub E, Uswatte G, King DK, Morris D, Crago JE, Chatterjee A. A placebo-controlled trial of constraint-induced movement therapy for upper extremity after stroke. Stroke. 2006;37:1045–1049. doi: 10.1161/01.STR.0000206463.66461.97. [DOI] [PubMed] [Google Scholar]
  • 30.van der Lee JH. Constraint-induced movement therapy: some thoughts about theories and evidence. J Rehabil Med 2003:S41–S45. [DOI] [PubMed]
  • 31.Siegert RJ, Lord S, Porter K. Constraint-induced movement therapy: time for a little restraint? Clin Rehabil. 2004;18:110–114. doi: 10.1191/0269215504cr711oa. [DOI] [PubMed] [Google Scholar]
  • 32.Dromerick AW. Evidence-based rehabilitation. The case for and against constraint-induced movement therapy. J Rehabil Res Dev. 2003;40:vii–ix. doi: 10.1682/jrrd.2003.01.00ix. [DOI] [PubMed] [Google Scholar]
  • 33.van der Lee JH, Wagenaar RC, Lankhorst GJ, Vogelaar TW, Deville WL, Bouter LM. Forced use of the upper extremity in chronic stroke patients. Stroke. 1999;30:2369–2375. doi: 10.1161/01.STR.30.1.1. [DOI] [PubMed] [Google Scholar]
  • 34.Page SJ, Sisto S, Levine P, McGrath RE. Efficacy of modified constraint-induced movement therapy in chronic stroke: a single-blinded randomized controlled trial. Arch Phys Med Rehabil. 2004;85:14–18. doi: 10.1016/S0003-9993(03)00481-7. [DOI] [PubMed] [Google Scholar]
  • 35.Parry RH, Lincoln NB, Vass CD. Effect of severity of arm impairment on response to additional physiotherapy early after stroke. Clin Rehabil. 1999;13:187–198. doi: 10.1191/026921599676198929. [DOI] [PubMed] [Google Scholar]
  • 36.Hesse S, Schmidt H, Werner C, Bardeleben A. Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Curr Opin Neurol. 2003;16:705–710. doi: 10.1097/00019052-200312000-00010. [DOI] [PubMed] [Google Scholar]
  • 37.Krebs HI, Hogan N, Aisen ML, Volpe BT. Robot-aided neurore-habilitation. IEEE Trans Rehabil Eng. 1998;6:75–87. doi: 10.1109/86.662623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Volpe BT, Ferraro M, Lynch D, et al. Robotics and other devices in the treatment of patients recovering from stroke. Curr Athero-scler Rep. 2004;6:314–319. doi: 10.1007/s11883-004-0064-z. [DOI] [PubMed] [Google Scholar]
  • 39.Ferraro M, Palazzolo JJ, Krol J, Krebs HI, Hogan N, Volpe BT. Robot-aided sensorimotor arm training improves outcome in patients with chronic stroke. Neurology. 2003;61:1604–1607. doi: 10.1212/01.WNL.0000095963.00970.68. [DOI] [PubMed] [Google Scholar]
  • 40.Fasoli SE, Krebs HI, Stein J, Frontera WR, Hogan N. Effects of robotic therapy on motor impairment and recovery in chronic stroke. Arch Phys Med Rehabil. 2003;84:477–482. doi: 10.1053/apmr.2003.50110. [DOI] [PubMed] [Google Scholar]
  • 41.Reinkensmeyer DJ, Dewald JP, Rymer WZ. Guidance-based quantification of arm impairment following brain injury: a pilot study. IEEE Trans Rehabil Eng. 1999;7:1–11. doi: 10.1109/86.750543. [DOI] [PubMed] [Google Scholar]
  • 42.Kahn LE, Lum PS, Rymer WZ, Reinkensmeyer DJ. Robot-assisted movement training for the stroke-impaired arm: does it matter what the robot does? J Rehabil Res Dev (in press). [DOI] [PubMed]
  • 43.Lum PS, Burgar CG, Shor PC, Majmundar M, Van der Loos M. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil. 2002;83:952–959. doi: 10.1053/apmr.2001.33101. [DOI] [PubMed] [Google Scholar]
  • 44.Lum PS, Burgar CG, Shor PC. Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis. IEEE Trans Neural Syst Rehabil Eng. 2004;12:186–194. doi: 10.1109/TNSRE.2004.827225. [DOI] [PubMed] [Google Scholar]
  • 45.Lindeman E, Spaans F, Reulen J, Leffers P, Drukker J. Progressive resistance training in neuromuscular patients. Effects on force and surface EMG. J Electromyogr Kinesiol. 1999;9:379–384. doi: 10.1016/S1050-6411(99)00003-6. [DOI] [PubMed] [Google Scholar]
  • 46.McCartney N, Moroz D, Garner SH, McComas AJ. The effects of strength training in patients with selected neuromuscular disorders. Med Sci Sports Exerc. 1988;20:362–368. doi: 10.1249/00005768-198808000-00006. [DOI] [PubMed] [Google Scholar]
  • 47.Duchateau J, Enoka RM. Neural adaptations with chronic activity patterns in able-bodied humans. Am J Phys Med Rehabil. 2002;81:S17–S27. doi: 10.1097/00002060-200211001-00004. [DOI] [PubMed] [Google Scholar]
  • 48.Sharp SA, Brouwer BJ. Isokinetic strength training of the hemi-paretic knee: effects on function and spasticity. Arch Phys Med Rehabil. 1997;78:1231–1236. doi: 10.1016/S0003-9993(97)90337-3. [DOI] [PubMed] [Google Scholar]
  • 49.Ouellette MM, LeBrasseur NK, Bean JF, et al. High-intensity resistance training improves muscle strength, self-reported function, and disability in long-term stroke survivors. Stroke. 2004;35:1404–1409. doi: 10.1161/01.STR.0000127785.73065.34. [DOI] [PubMed] [Google Scholar]
  • 50.Lum PS, Burgar CG, Shor PC. Evidence for strength imbalances as a significant contributor to abnormal synergies in hemiparetic subjects. Muscle Nerve. 2003;27:211–221. doi: 10.1002/mus.10305. [DOI] [PubMed] [Google Scholar]
  • 51.Morrissey MC, Harman EA, Johnson MJ. Resistance training modes: specificity and effectiveness. Med Sci Sports Exerc. 1995;27:648–660. [PubMed] [Google Scholar]
  • 52.Jones DA, Rutherford OM. Human muscle strength training: the effects of three different regimens and the nature of the resultant changes. J Physiol. 1987;391:1–11. doi: 10.1113/jphysiol.1987.sp016721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Barbeau H, Wainberg M, Finch L. Description and application of a system for locomotor rehabilitation. Med Biol Eng Comput. 1987;25:341–344. doi: 10.1007/BF02447435. [DOI] [PubMed] [Google Scholar]
  • 54.Edgerton VR, de Guzman CP, Gregor RJ, Roy RR, Hodgson JA, Lovely RG. Trainability of the spinal cord to generate hindlimb stepping patterns in adult spinalized cats. In: Shimamura SM, Grillner S, Edgerton VR, editors. Neurobiological basis of human locomotion. Tokyo: Japan Scientific Societies Press; 1991. pp. 411–423. [Google Scholar]
  • 55.Belanger M, Drew T, Provencher J, Rossignol S. A comparison of treadmill locomotion in adult cats before and after spinal transection. J Neurophysiol. 1996;76:471–491. doi: 10.1152/jn.1996.76.1.471. [DOI] [PubMed] [Google Scholar]
  • 56.Barbeau H, Rossignol S. Recovery of locomotion after chronic spinalization in the adult cat. Brain Res. 1987;412:84–95. doi: 10.1016/0006-8993(87)91442-9. [DOI] [PubMed] [Google Scholar]
  • 57.Lovely RG, Gregor RJ, Roy RR, Edgerton VR. Effects of training on the recovery of full-weight-bearing stepping in the adult spinal cat. Exp Neurol. 1986;92:421–435. doi: 10.1016/0014-4886(86)90094-4. [DOI] [PubMed] [Google Scholar]
  • 58.de Leon RD, Hodgson JA, Roy RR, Edgerton VR. Locomotor capacity attributable to step training versus spontaneous recovery after spinalization in adult cats. J Neurophysiol. 1998;79:1329–1340. doi: 10.1152/jn.1998.79.3.1329. [DOI] [PubMed] [Google Scholar]
  • 59.Wolpaw JR, Tennissen AM. Activity-dependent spinal cord plasticity in health and disease. Annu Rev Neurosci. 2001;24:807–843. doi: 10.1146/annurev.neuro.24.1.807. [DOI] [PubMed] [Google Scholar]
  • 60.van de Crommert HWAA, Mulder T, Duysens J. Neural control of locomotion: sensory control of the central patter generator and its relation to treadmill training. Gait Posture. 1998;7:251–263. doi: 10.1016/S0966-6362(98)00010-1. [DOI] [PubMed] [Google Scholar]
  • 61.de Leon RD, Roy RR, Edgerton VR. Is the recovery of stepping following spinal cord injury mediated by modifying existing neural pathways or by generating new pathways? A perspective. Phys Ther. 2001;81:1904–1911. [PubMed] [Google Scholar]
  • 62.Behrman AL, Harkema SJ. Locomotor training after human spinal cord injury: a series of case studies. Phys Ther. 2000;80:688–700. [PubMed] [Google Scholar]
  • 63.Wernig A, Muller S. Laufband locomotion with body weight support improved walking in persons with severe spinal cord injuries. Paraplegia. 1992;30:229–238. doi: 10.1038/sc.1992.61. [DOI] [PubMed] [Google Scholar]
  • 64.Wernig A, Nanassy A, Muller S. Laufband (treadmill) therapy in incomplete paraplegia and tetraplegia. J Neurotrauma. 1999;16:719–726. doi: 10.1089/neu.1999.16.719. [DOI] [PubMed] [Google Scholar]
  • 65.Dietz V. Locomotor training in paraplegic patients. Ann Neurol. 1995;386:965–965. doi: 10.1002/ana.410380621. [DOI] [PubMed] [Google Scholar]
  • 66.Hesse S, Bertelt C, Jahnke MT, et al. Treadmill training with partial body weight support compared with physiotherapy in nonambulatory hemiparetic stroke patients. Stroke. 1995;26:976–981. doi: 10.1161/01.STR.26.6.976. [DOI] [PubMed] [Google Scholar]
  • 67.Mauritz KH, Hesse S, Platz T. Late recovery of motor functions. Adv Neurol. 1997;73:395–408. [PubMed] [Google Scholar]
  • 68.Visintin M, Barbeau H, Korner-Bitensky N, Mayo NE. A new approach to retrain gait in stroke patients through body weight support and treadmill stimulation. Stroke. 1998;29:1122–1128. doi: 10.1161/01.STR.29.6.1122. [DOI] [PubMed] [Google Scholar]
  • 69.Dobkin BH, Apple D, Barbeau H, et al. Methods for a randomized trial of weight-supported treadmill training versus conventional training for walking during inpatient rehabilitation after incomplete traumatic spinal cord injury. Neurorehabil Neural Repair. 2003;17:153–167. doi: 10.1177/0888439003255508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Dobkin B, Apple D, Barbeau H, et al. Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI. Neurology. 2006;66:484–493. doi: 10.1212/01.wnl.0000202600.72018.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Di Giovanna I, Hayes G. Principles of clinical research. Petersfield, United Kingdom: Wrightson Biomedical; 2001. The drug development process; pp. 1–16. [Google Scholar]
  • 72.Knapp HD, Taub E, Berman AJ. Movements in monkeys with deafferented forelimbs. Exp Neurol. 1963;7:305–315. doi: 10.1016/0014-4886(63)90077-3. [DOI] [PubMed] [Google Scholar]
  • 73.Schallert T, Leasure JL, Kolb B. Experience-associated structural events, subependymal cellular proliferative activity, and functional recovery after injury to the central nervous system. J Cereb Blood Flow Metab. 2000;20:1513–1528. doi: 10.1097/00004647-200011000-00001. [DOI] [PubMed] [Google Scholar]
  • 74.Edgerton VR, Tillakaratne NJK, Bigbee AJ, de Leon RD, Roy RR. Plasticity of the spinal neural circuitry after injury. Annu Rev Neurosci. 2004;27:145–167. doi: 10.1146/annurev.neuro.27.070203.144308. [DOI] [PubMed] [Google Scholar]
  • 75.Richard Green A, Odergren T, Ashwood T. Animal models of stroke: do they have value for discovering neuroprotective agents? Trends Pharmacol Sci. 2003;24:402–408. doi: 10.1016/S0165-6147(03)00192-5. [DOI] [PubMed] [Google Scholar]
  • 76.Dobkin BH, Havton LA. Basic advances and new avenues in therapy of spinal cord injury. Annu Rev Med. 2004;55:255–282. doi: 10.1146/annurev.med.55.091902.104338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Dromerick AW, Morris LB, editors. Acute ischemic stroke lesions in humans: how do they compare to animal models used to study stroke recovery? Washington, DC: Society for Neuroscience; 2005. [Google Scholar]
  • 78.Page SJ, Levine P, Leonard AC. Modified constraint-induced therapy in acute stroke: a randomized controlled pilot study. Neurorehabil Neural Repair. 2005;19:27–32. doi: 10.1177/1545968304272701. [DOI] [PubMed] [Google Scholar]
  • 79.McDonald JW, Becker D, Sadowsky CL, Jane JA, Conturo TE, Schultz LM. Late recovery following spinal cord injury. Case report and review of the literature. J Neurosurg. 2002;97:S252–S265. doi: 10.3171/spi.2002.97.2.0252. [DOI] [PubMed] [Google Scholar]
  • 80.Ricamato AL, Hidler JM. Quantification of the dynamic properties of EMG patterns during gait. J Electromyogr Kinesiol. 2005;15:384–92. doi: 10.1016/j.jelekin.2004.10.003. [DOI] [PubMed] [Google Scholar]
  • 81.Gresham GE. Stroke outcome research. Stroke. 1986;17:358–360. doi: 10.1161/01.STR.17.3.358. [DOI] [PubMed] [Google Scholar]
  • 82.Wylie CM. The value of early rehabilitation in stroke. Geriatrics. 1970;25:107–113. [PubMed] [Google Scholar]
  • 83.Ottenbacher KJ, Janneil S. The results of clinical trials in stroke rehabilitation research. Arch Neurol. 1993;50:37–44. doi: 10.1001/archneur.1993.00540010033014. [DOI] [PubMed] [Google Scholar]
  • 84.Paolucci S, Antonucci G, Grasso MG, et al. Early versus delayed inpatient stroke rehabilitation: a matched comparison conducted in Italy. Arch Phys Med Rehabil. 2000;81:695–700. doi: 10.1016/s0003-9993(00)90095-9. [DOI] [PubMed] [Google Scholar]
  • 85.Jones TA, Schallert T. Use-dependent growth of pyramidal neurons after neocortical damage. J Neurosci. 1994;14:2140–2152. doi: 10.1523/JNEUROSCI.14-04-02140.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Kempermann G, Gage FH. Experience-dependent regulation of adult hippocampal neurogenesis: effects of long-term stimulation and stimulus withdrawal. Hippocampus. 1999;9:321–332. doi: 10.1002/(SICI)1098-1063(1999)9:3<321::AID-HIPO11>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
  • 87.Biernaskie J, Chernenko G, Corbett D. Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. J Neurosci. 2004;24:1245–1254. doi: 10.1523/JNEUROSCI.3834-03.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Barbeau H, Visintin M. Optimal outcomes obtained with body-weight support combined with treadmill training in stroke subjects. Arch Phys Med Rehabil. 2003;84:1458–1465. doi: 10.1016/S0003-9993(03)00361-7. [DOI] [PubMed] [Google Scholar]
  • 89.Dodds TA, Martin DP, Stolov WC, Deyo RA. A validation of the functional independence measure and its performance among rehabilitation in patients. Arch Phys Med Rehabil. 1993;74:531–536. doi: 10.1016/0003-9993(93)90119-U. [DOI] [PubMed] [Google Scholar]

Articles from NeuroRx are provided here courtesy of Am. Soc. for Experimental NeuroTherapeutics

RESOURCES