Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1993 Jun;13(6):3401–3414. doi: 10.1128/mcb.13.6.3401

Transcriptional downregulation of the retina-specific QR1 gene by pp60v-src and identification of a novel v-src-responsive unit.

A Pierani 1, C Pouponnot 1, G Calothy 1
PMCID: PMC359806  PMID: 8388536

Abstract

The embryonic avian neuroretina (NR) is part of the central nervous system and is composed of various cell types: photoreceptors and neuronal and Müller (glial) cells. These cells are derived from proliferating neuroectodermal precursors which differentiate after terminal mitosis and become organized in cell strata. Proliferation of differentiating NR cells can be induced by infection with Rous sarcoma virus (RSV) and requires the expression of a functional v-src gene. To understand the mechanisms involved in the regulation of neural cell growth and differentiation, we studied the transcriptional regulation of QR1, a gene specifically expressed in postmitotic NR cells. Transcription of this gene is detected primarily in Müller cells and is strongly downregulated by the v-src gene product. Moreover, QR1 expression takes place only during the late phase of retinal development and is shut off abruptly at hatching. We have isolated a promoter region(s) of the QR1 gene that confers v-src responsiveness. By transfection of QR1-CAT constructs into quail NR cells infected with the temperature-sensitive mutant of RSV, PA101, we have identified a v-src-responsive region located between -1208 and -1161 upstream of the transcription initiation site. This sequence is able to form two DNA-protein complexes, C1 and C2. Formation of complex C2 is specifically induced in cells expressing an active v-src product, while formation of C1 is detected mainly in nonproliferating quail NR cells upon pp60v-src inactivation. C1 is also a target for regulation during development. We have identified the DNA binding site for the C1 complex, a repeated GCTGAC sequence, and shown that mutations in this element abolish binding of this factor as well as transcription of the gene at the nonpermissive temperature. Neither formation of C1 nor that of C2 seems to involve factors known to be targeted in the pp60v-src cascade. Our data suggest that C1 could be a novel target for both developmental control and oncogene-induced cell growth regulation.

Full text

PDF
3401

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alema S., Tato F., Boettiger D. myc and src oncogenes have complementary effects on cell proliferation and expression of specific extracellular matrix components in definitive chondroblasts. Mol Cell Biol. 1985 Mar;5(3):538–544. doi: 10.1128/mcb.5.3.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. An G., Hidaka K., Siminovitch L. Expression of bacterial beta-galactosidase in animal cells. Mol Cell Biol. 1982 Dec;2(12):1628–1632. doi: 10.1128/mcb.2.12.1628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Apel I., Yu C. L., Wang T., Dobry C., Van Antwerp M. E., Jove R., Prochownik E. V. Regulation of the junB gene by v-src. Mol Cell Biol. 1992 Aug;12(8):3356–3364. doi: 10.1128/mcb.12.8.3356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barnstable C. J. A molecular view of vertebrate retinal development. Mol Neurobiol. 1987 Spring-Summer;1(1-2):9–46. doi: 10.1007/BF02935263. [DOI] [PubMed] [Google Scholar]
  5. Bedard P. A., Yannoni Y., Simmons D. L., Erikson R. L. Rapid repression of quiescence-specific gene expression by epidermal growth factor, insulin, and pp60v-src. Mol Cell Biol. 1989 Mar;9(3):1371–1375. doi: 10.1128/mcb.9.3.1371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Beddington R. S., Morgernstern J., Land H., Hogan A. An in situ transgenic enzyme marker for the midgestation mouse embryo and the visualization of inner cell mass clones during early organogenesis. Development. 1989 May;106(1):37–46. doi: 10.1242/dev.106.1.37. [DOI] [PubMed] [Google Scholar]
  7. Birchenall-Roberts M. C., Ruscetti F. W., Kasper J., Lee H. D., Friedman R., Geiser A., Sporn M. B., Roberts A. B., Kim S. J. Transcriptional regulation of the transforming growth factor beta 1 promoter by v-src gene products is mediated through the AP-1 complex. Mol Cell Biol. 1990 Sep;10(9):4978–4983. doi: 10.1128/mcb.10.9.4978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Blobel G. A., Hanafusa H. The v-src inducible gene 9E3/pCEF4 is regulated by both its promoter upstream sequence and its 3' untranslated region. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1162–1166. doi: 10.1073/pnas.88.4.1162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Boettiger D., Roby K., Brumbaugh J., Biehl J., Holtzer H. Transformation of chicken embryo retinal melanoblasts by a temperature-sensitive mutant of Rous sarcoma virus. Cell. 1977 Aug;11(4):881–890. doi: 10.1016/0092-8674(77)90299-9. [DOI] [PubMed] [Google Scholar]
  10. Calothy G., Laugier D., Cross F. R., Jove R., Hanafusa T., Hanafusa H. The membrane-binding domain and myristylation of p60v-src are not essential for stimulation of cell proliferation. J Virol. 1987 May;61(5):1678–1681. doi: 10.1128/jvi.61.5.1678-1681.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Calothy G., Poirier F., Dambrine G., Mignatti P., Combes P., Pessac B. Expression of viral oncogenes in differentiating chick embryo neuroretinal cells infected with avian tumor viruses. Cold Spring Harb Symp Quant Biol. 1980;44(Pt 2):983–990. doi: 10.1101/sqb.1980.044.01.106. [DOI] [PubMed] [Google Scholar]
  12. Calothy G., Poirier F., Dambrine G., Pessac B. A transformation defective mutant of Rous sarcoma virus inducing chick embryo neuroretinal cell proliferation. Virology. 1978 Aug;89(1):75–84. doi: 10.1016/0042-6822(78)90041-7. [DOI] [PubMed] [Google Scholar]
  13. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  14. Crisanti P., Lorinet A. M., Calothy G., Pessac B. Glutamic acid decarboxylase activity is stimulated in quail retina neuronal cells transformed by Rous sarcoma virus and is regulated by pp60v-src. EMBO J. 1985 Jun;4(6):1467–1470. doi: 10.1002/j.1460-2075.1985.tb03804.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dehbi M., Mbiguino A., Beauchemin M., Chatelain G., Bédard P. A. Transcriptional activation of the CEF-4/9E3 cytokine gene by pp60v-src. Mol Cell Biol. 1992 Apr;12(4):1490–1499. doi: 10.1128/mcb.12.4.1490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Dutta A., Hamaguchi M., Hanafusa H. Serum independence of transcription from the promoter of an avian retrovirus in v-src-transformed cells is a primary, intracellular effect of increased tyrosine phosphorylation. Proc Natl Acad Sci U S A. 1990 Jan;87(2):608–612. doi: 10.1073/pnas.87.2.608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Dutta A., Stoeckle M. Y., Hanafusa H. Serum and v-src increase the level of a CCAAT-binding factor required for transcription from a retroviral long terminal repeat. Genes Dev. 1990 Feb;4(2):243–254. doi: 10.1101/gad.4.2.243. [DOI] [PubMed] [Google Scholar]
  19. Falcone G., Alemà S., Tatò F. Transcription of muscle-specific genes is repressed by reactivation of pp60v-src in postmitotic quail myotubes. Mol Cell Biol. 1991 Jun;11(6):3331–3338. doi: 10.1128/mcb.11.6.3331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Falcone G., Tatò F., Alemà S. Distinctive effects of the viral oncogenes myc, erb, fps, and src on the differentiation program of quail myogenic cells. Proc Natl Acad Sci U S A. 1985 Jan;82(2):426–430. doi: 10.1073/pnas.82.2.426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Fiszman M. Y., Fuchs P. Temperature-sensitive expression of differentiation in transformed myoblasts. Nature. 1975 Apr 3;254(5499):429–431. doi: 10.1038/254429a0. [DOI] [PubMed] [Google Scholar]
  22. Fujii M., Shalloway D., Verma I. M. Gene regulation by tyrosine kinases: src protein activates various promoters, including c-fos. Mol Cell Biol. 1989 Jun;9(6):2493–2499. doi: 10.1128/mcb.9.6.2493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Gorman C. M., Merlino G. T., Willingham M. C., Pastan I., Howard B. H. The Rous sarcoma virus long terminal repeat is a strong promoter when introduced into a variety of eukaryotic cells by DNA-mediated transfection. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6777–6781. doi: 10.1073/pnas.79.22.6777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Gorman C. M., Moffat L. F., Howard B. H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982 Sep;2(9):1044–1051. doi: 10.1128/mcb.2.9.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Grady E. F., Schwab M., Rosenau W. Expression of N-myc and c-src during the development of fetal human brain. Cancer Res. 1987 Jun 1;47(11):2931–2936. [PubMed] [Google Scholar]
  26. Graham F. L., van der Eb A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973 Apr;52(2):456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
  27. Guermah M., Crisanti P., Laugier D., Dezelee P., Bidou L., Pessac B., Calothy G. Transcription of a quail gene expressed in embryonic retinal cells is shut off sharply at hatching. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4503–4507. doi: 10.1073/pnas.88.10.4503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Guermah M., Gillet G., Michel D., Laugier D., Brun G., Calothy G. Down regulation by p60v-src of genes specifically expressed and developmentally regulated in postmitotic quail neuroretina cells. Mol Cell Biol. 1990 Jul;10(7):3584–3590. doi: 10.1128/mcb.10.7.3584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Gutman A., Wasylyk B. Nuclear targets for transcription regulation by oncogenes. Trends Genet. 1991 Feb;7(2):49–54. doi: 10.1016/0168-9525(91)90231-E. [DOI] [PubMed] [Google Scholar]
  30. Gutman A., Wasylyk B. The collagenase gene promoter contains a TPA and oncogene-responsive unit encompassing the PEA3 and AP-1 binding sites. EMBO J. 1990 Jul;9(7):2241–2246. doi: 10.1002/j.1460-2075.1990.tb07394.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Hendricks M., Weintraub H. Multiple tropomyosin polypeptides in chicken embryo fibroblasts: differential repression of transcription by Rous sarcoma virus transformation. Mol Cell Biol. 1984 Sep;4(9):1823–1833. doi: 10.1128/mcb.4.9.1823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Holtzer H., Biehl J., Yeoh G., Meganathan R., Kaji A. Effect of oncogenic virus on muscle differentiation. Proc Natl Acad Sci U S A. 1975 Oct;72(10):4051–4055. doi: 10.1073/pnas.72.10.4051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Hunter D. D., Murphy M. D., Olsson C. V., Brunken W. J. S-laminin expression in adult and developing retinae: a potential cue for photoreceptor morphogenesis. Neuron. 1992 Mar;8(3):399–413. doi: 10.1016/0896-6273(92)90269-j. [DOI] [PubMed] [Google Scholar]
  34. Johnston I. G., Paladino T., Gurd J. W., Brown I. R. Molecular cloning of SC1: a putative brain extracellular matrix glycoprotein showing partial similarity to osteonectin/BM40/SPARC. Neuron. 1990 Jan;4(1):165–176. doi: 10.1016/0896-6273(90)90452-l. [DOI] [PubMed] [Google Scholar]
  35. Joseph C. K., Qureshi S. A., Wallace D. J., Foster D. A. MARCKS protein is transcriptionally down-regulated in v-Src-transformed BALB/c 3T3 cells. J Biol Chem. 1992 Jan 15;267(2):1327–1330. [PubMed] [Google Scholar]
  36. Jove R., Garber E. A., Iba H., Hanafusa H. Biochemical properties of p60v-src mutants that induce different cell transformation parameters. J Virol. 1986 Dec;60(3):849–857. doi: 10.1128/jvi.60.3.849-857.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Jähner D., Hunter T. The ras-related gene rhoB is an immediate-early gene inducible by v-Fps, epidermal growth factor, and platelet-derived growth factor in rat fibroblasts. Mol Cell Biol. 1991 Jul;11(7):3682–3690. doi: 10.1128/mcb.11.7.3682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Jähner D., Hunter T. The stimulation of quiescent rat fibroblasts by v-src and v-fps oncogenic protein-tyrosine kinases leads to the induction of a subset of immediate early genes. Oncogene. 1991 Jul;6(7):1259–1268. [PubMed] [Google Scholar]
  39. Kahn P., Adkins B., Beug H., Graf T. src- and fps-containing avian sarcoma viruses transform chicken erythroid cells. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7122–7126. doi: 10.1073/pnas.81.22.7122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Kawai S., Hanafusa H. The effects of reciprocal changes in temperature on the transformed state of cells infected with a rous sarcoma virus mutant. Virology. 1971 Nov;46(2):470–479. doi: 10.1016/0042-6822(71)90047-x. [DOI] [PubMed] [Google Scholar]
  41. Lankat-Buttgereit B., Mann K., Deutzmann R., Timpl R., Krieg T. Cloning and complete amino acid sequences of human and murine basement membrane protein BM-40 (SPARC, osteonectin). FEBS Lett. 1988 Aug 29;236(2):352–356. doi: 10.1016/0014-5793(88)80054-1. [DOI] [PubMed] [Google Scholar]
  42. Lynch S. A., Brugge J. S., Levine J. M. Induction of altered c-src product during neural differentiation of embryonal carcinoma cells. Science. 1986 Nov 14;234(4778):873–876. doi: 10.1126/science.3095923. [DOI] [PubMed] [Google Scholar]
  43. Martinez R., Mathey-Prevot B., Bernards A., Baltimore D. Neuronal pp60c-src contains a six-amino acid insertion relative to its non-neuronal counterpart. Science. 1987 Jul 24;237(4813):411–415. doi: 10.1126/science.2440106. [DOI] [PubMed] [Google Scholar]
  44. Marx M., Cerutti P., Hill M., Carloni G., Sergeant A., Kaczorek M. Continuous production of Rous sarcoma virus free of transformation defective virus in clones of established RSV-transformed quail cells. Virology. 1981 Nov;115(1):10–19. doi: 10.1016/0042-6822(81)90084-2. [DOI] [PubMed] [Google Scholar]
  45. Mayer B. J., Jove R., Krane J. F., Poirier F., Calothy G., Hanafusa H. Genetic lesions involved in temperature sensitivity of the src gene products of four Rous sarcoma virus mutants. J Virol. 1986 Dec;60(3):858–867. doi: 10.1128/jvi.60.3.858-867.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Pacifici M., Boettiger D., Roby K., Holtzer H. Transformation of chondroblasts by Rous sarcoma virus and synthesis of the sulfated proteoglycan matrix. Cell. 1977 Aug;11(4):891–899. doi: 10.1016/0092-8674(77)90300-2. [DOI] [PubMed] [Google Scholar]
  47. Pessac B., Calothy G. Transformation of chick embryo neuroretinal cells by Rous sarcoma virus in vitro: induction of cell proliferation. Science. 1974 Aug;185(4152):709–710. doi: 10.1126/science.185.4152.709. [DOI] [PubMed] [Google Scholar]
  48. Pessac B., Girard A., Romey G., Crisanti P., Lorinet A. M., Calothy G. A neuronal clone derived from a Rous sarcoma virus-transformed quail embryo neuroretina established culture. Nature. 1983 Apr 14;302(5909):616–618. doi: 10.1038/302616a0. [DOI] [PubMed] [Google Scholar]
  49. Pierani A., Heguy A., Fujii H., Roeder R. G. Activation of octamer-containing promoters by either octamer-binding transcription factor 1 (OTF-1) or OTF-2 and requirement of an additional B-cell-specific component for optimal transcription of immunoglobulin promoters. Mol Cell Biol. 1990 Dec;10(12):6204–6215. doi: 10.1128/mcb.10.12.6204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Poirier F., Calothy G., Karess R. E., Erikson E., Hanafusa H. Role of p60src kinase activity in the induction of neuroretinal cell proliferation by rous sarcoma virus. J Virol. 1982 Jun;42(3):780–789. doi: 10.1128/jvi.42.3.780-789.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Qureshi S. A., Cao X. M., Sukhatme V. P., Foster D. A. v-Src activates mitogen-responsive transcription factor Egr-1 via serum response elements. J Biol Chem. 1991 Jun 15;266(17):10802–10806. [PubMed] [Google Scholar]
  52. Qureshi S. A., Joseph C. K., Rim M., Maroney A., Foster D. A. v-Src activates both protein kinase C-dependent and independent signaling pathways in murine fibroblasts. Oncogene. 1991 Jun;6(6):995–999. [PubMed] [Google Scholar]
  53. Ryseck R. P., Bravo R. c-JUN, JUN B, and JUN D differ in their binding affinities to AP-1 and CRE consensus sequences: effect of FOS proteins. Oncogene. 1991 Apr;6(4):533–542. [PubMed] [Google Scholar]
  54. Sage E. H., Bornstein P. Extracellular proteins that modulate cell-matrix interactions. SPARC, tenascin, and thrombospondin. J Biol Chem. 1991 Aug 15;266(23):14831–14834. [PubMed] [Google Scholar]
  55. Saint R., Wigley P. L. Developmental regulation of the cell cycle. Curr Opin Genet Dev. 1992 Aug;2(4):614–620. doi: 10.1016/s0959-437x(05)80181-9. [DOI] [PubMed] [Google Scholar]
  56. Schwarz R. I., Farson D. A., Soo W. J., Bissell M. J. Primary avian tendon cells in culture. An improved system for understanding malignant transformation. J Cell Biol. 1978 Dec;79(3):672–679. doi: 10.1083/jcb.79.3.672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Schönthal A., Herrlich P., Rahmsdorf H. J., Ponta H. Requirement for fos gene expression in the transcriptional activation of collagenase by other oncogenes and phorbol esters. Cell. 1988 Jul 29;54(3):325–334. doi: 10.1016/0092-8674(88)90195-x. [DOI] [PubMed] [Google Scholar]
  58. Simmons D. L., Levy D. B., Yannoni Y., Erikson R. L. Identification of a phorbol ester-repressible v-src-inducible gene. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1178–1182. doi: 10.1073/pnas.86.4.1178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Simonneau L., Crisanti P., Lorinet A. M., Alliot F., Courtois Y., Calothy G., Pessac B. Crystallin gene expression and lentoid body formation in quail embryo neuroretina cultures transformed by the oncogenic retrovirus Mill Hill 2 or Rous sarcoma virus. Mol Cell Biol. 1986 Nov;6(11):3704–3710. doi: 10.1128/mcb.6.11.3704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Sorge L. K., Levy B. T., Maness P. F. pp60c-src is developmentally regulated in the neural retina. Cell. 1984 Feb;36(2):249–257. doi: 10.1016/0092-8674(84)90218-6. [DOI] [PubMed] [Google Scholar]
  61. Stein B., Rahmsdorf H. J., Steffen A., Litfin M., Herrlich P. UV-induced DNA damage is an intermediate step in UV-induced expression of human immunodeficiency virus type 1, collagenase, c-fos, and metallothionein. Mol Cell Biol. 1989 Nov;9(11):5169–5181. doi: 10.1128/mcb.9.11.5169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Vardimon L., Fox L. E., Cohen-Kupiec R., Degenstein L., Moscona A. A. Expression of v-src in embryonic neural retina alters cell adhesion, inhibits histogenesis, and prevents induction of glutamine synthetase. Mol Cell Biol. 1991 Oct;11(10):5275–5284. doi: 10.1128/mcb.11.10.5275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Vardimon L., Fox L. E., Moscona A. A. Accumulation of c-src mRNA is developmentally regulated in embryonic neural retina. Mol Cell Biol. 1986 Nov;6(11):4109–4111. doi: 10.1128/mcb.6.11.4109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Wasylyk C., Flores P., Gutman A., Wasylyk B. PEA3 is a nuclear target for transcription activation by non-nuclear oncogenes. EMBO J. 1989 Nov;8(11):3371–3378. doi: 10.1002/j.1460-2075.1989.tb08500.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Wasylyk C., Imler J. L., Wasylyk B. Transforming but not immortalizing oncogenes activate the transcription factor PEA1. EMBO J. 1988 Aug;7(8):2475–2483. doi: 10.1002/j.1460-2075.1988.tb03094.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Welham M. J., Wyke J. A., Lang A., Wyke A. W. Mitogenesis induced by pp60v-src is not accompanied by increased expression of immediate early response genes. Oncogene. 1990 Feb;5(2):161–169. [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES