Highlights
▸ Many fMRI/fcMRI studies report differences between autistic and typical children. ▸ Differences may relate to differential neurovascular coupling. ▸ We compare visuomotor task-evoked BOLD signal in Simplex Autism to typical children. ▸ Hemodynamic response in Simplex Autism children is comparable to typical children. ▸ Results in autism studies likely reflect differences in neural activity not coupling.
Keywords: Functional magnetic resonance imaging, Visuomotor, Autism spectrum disorders, Event-related, Neurovascular coupling, Medication effects
Abstract
Background
Numerous functional magnetic resonance imaging (fMRI) studies of the brain-bases of autism have demonstrated altered cortical responses in subjects with autism, relative to typical subjects, during a variety of tasks. These differences may reflect altered neuronal responses or altered hemodynamic response. This study searches for evidence of hemodynamic response differences by using a simple visual stimulus and elementary motor actions, which should elicit similar neuronal responses in patients and controls.
Methods
We acquired fMRI data from two groups of 16 children, a typical group and a group with Simplex Autism, during a simple visuomotor paradigm previously used to assess this question in other cross-group comparisons. A general linear model estimated the blood-oxygen-level-dependent (BOLD) signal time course, and repeated-measures analysis of variance tested for potential cross-group differences in the BOLD signal.
Results
The hemodynamic response in Simplex Autism is similar to that found in typical children. Although the sample size was small for a secondary analysis, medication appeared to have no effect on the hemodynamic response within the Simplex Autism group.
Conclusions
When fMRI studies show BOLD response differences between autistic and typical subjects, these results likely reflect between-group differences in neural activity and not an altered hemodynamic response.
1. Introduction
Fluctuations in the blood-oxygen-level-dependent (BOLD) signal have been shown to couple tightly with neural activity (Logothetis et al., 2001). Thus, functional magnetic resonance imaging (fMRI) and functional connectivity MRI (fcMRI) can be used as indirect measures of neural activity. However, atypical subjects, such as children with ASD (autistic spectrum disorders), may have a quantitatively different relationship between the blood-oxygen-level-dependent (BOLD) signal, which is measured by fMRI, and neuronal responses, i.e., different neurovascular coupling.
This is important because recent fMRI studies (e.g., Mostofsky et al., 2009, Muller et al., 2003) have shown differences in the BOLD signal for motor, parietal, cerebellar, and prefrontal cortical regions of the brain during complex visuomotor tasks. Further, recent fcMRI studies have reported under-connectivity between anterior and posterior regions of the brain (e.g., Cherkassky et al., 2006); aberrant connectivity in frontal, parietal, and occipital regions of the brain (e.g., Noonan et al., 2009); and reduced long range functional connection between regions of the brain comprising the default-mode network (e.g., Kennedy and Courchesne, 2008, Monk et al., 2009, Weng et al., 2010).
fMRI and fcMRI comparisons of ASD and typical subjects typically assume a hemodynamic response time course that, independent of differences in neural activity, is the same between ASD and typical subjects (e.g., Gomot et al., 2008, Kaiser et al., 2010). However, little data exist to show that the hemodynamic response is generally similar between people with and without ASD. In order to interpret properly the current autism fMRI literature, it is important to demonstrate that the basic hemodynamic response is similar between ASD and typical cohorts at typical sample sizes. A key first step would be to examine the hemodynamic response of people with and without ASD during a simple task, where the demands of the task are not likely to be affected by an ASD diagnosis (Church et al., 2011, Church et al., 2012, Harris et al., 2011). The value of this step is predicated on the assumption that the two cohorts would perform the task the same way and have similar neuronal activity that could then be measured by fMRI. The limitations to this assumption are discussed in Section 4.
We compared the temporal dynamics of the BOLD signal between children with and without Simplex Autism (defined below) during a simple visuomotor task (Miezin et al., 2000) in which we would expect no significant differences in the underlying neural activity. The same paradigm has been used to test the hypothesis that typical adults and children have the same fundamental relationship between neural activity and the BOLD signal (Kang et al., 2003). If similar BOLD time courses are observed in multiple vascular distributions when the task is sufficiently simple that neuronal processing is expected to be equivalent in autistic and control children, then differences in BOLD time courses that are observed in fMRI autism studies of similar sample sizes more likely reflect differences in neural activity than differences in the hemodynamic response.
2. Materials and methods
2.1. Participants
Simplex Autism refers to well-characterized ASD individuals with no affected first-degree relatives. Sixteen typical and 16 Simplex Autism children (ages 9–14 years) were recruited using a variety of means, including recruitment from the local community through flyers and advertisements, and through other research collaborations. Demographics are shown in Table 1. Subjects were screened out for a history of focal neurological deficit, strabismus, or vision not corrected to normal acuity with glasses. All subjects (typical and ASD) had no first-degree relatives with an ASD. In addition, typical children could not have any first-degree relatives with Attention-Deficit/Hyperactivity Disorder (ADHD). Simplex Autism participants had (1) community MD or PhD clinical diagnoses of Autistic Disorder, Asperger's Disorder, or Pervasive Developmental Disorder Not Otherwise Specified (PDD-NOS), and (2) consensus research ASD diagnoses as measured by the Autism Diagnostic Observation Schedule (Lord et al., 2000) and Autism Diagnostic Interview Revised (Lord et al., 1994). Five typical and two Simplex Autism subjects were assessed in previous studies using the Wechsler Intelligence Scale for Children (WISC-IV). The other children were assessed using the Wechsler Abbreviated Scale of Intelligence (WASI). All children performed the vocabulary subtest of the corresponding assessment, and all but one typical child performed the block design subtest of the corresponding assessment. Informed consent and assent were obtained using procedures approved by the Washington University Human Research Protection Office.
Table 1.
Demographics |
||
---|---|---|
Simplex Autism subjects | Typical subjects | |
Male/female | 13m/3f | 13m/3f |
Age | 11.9 ± 1.89 | 12.6 ± 1.80 |
IQ | 104.9 ± 12.97 | 115.7 ± 10.64 |
Vocabulary scaled score | 10.25 ± 3.26 | 13.00 ± 2.37 |
Block design scaled score | 10.88 ± 3.05 | 12.23 ± 2.12 |
SRS | 102 ± 21.7 | 17.8 ± 9.56 |
Medicated/un-medicated | 8/8 | 0/16 |
2.2. MRI protocols
MRI data were acquired using a Siemens 3T Trio scanner (Erlangen, Germany) with standard 12-channel head coil. An iMac Macintosh computer (Apple, Cupertino, CA) running Psyscope X software (Cohen et al., 1993) was used to control the stimulus display. Responses were recorded using a fiberoptic key-press device held in the subject's hands. An LCD projector was used to project stimuli onto a screen at the head of the bore. Subjects viewed the stimuli through a mirror attached to the head coil.
High-resolution structural images were acquired using a sagittal MP-RAGE T1 weighted sequence (TE = 3.08 ms, TR = 2.4 s, TI = 1000 ms, flip angle = 8°, 176 slices at 1 mm isotropic resolution/voxel). Functional images were acquired using a BOLD contrast sensitive, gradient echo, echo-planar sequence (TE = 27 ms, flip angle = 90°, 4 mm × 4 mm × 4 mm isotropic resolution/voxel). MR acquisition was 2.5 s/frame and consisted of 32 contiguous, axial slices, centered on the hemispheric divide and parallel to the AC–PC plane. The first four frames in each run were discarded to allow stabilization of longitudinal magnetization. Each functional run lasted approximately three minutes (72 frames). Four runs were acquired per subject.
2.3. Behavioral paradigm
The task, a jittered event-related design known to generate highly reproducible activation in sensorimotor and visual cortex for both adults and children, has been described in detail previously (Kang et al., 2003, Miezin et al., 2000). Briefly, subjects pressed a button at the onset and offset of a visual stimulus presented for 1.26 s. The visual stimulus was a radial counterphase-flickering checkerboard subtending ∼11° of the visual field surrounding the fovea. Right and left index fingers were used for onset and offset respectively. Approximately 30 stimulus presentations appeared per 72-frame run. Accuracy, measured as a percentage of onset and offset omissions, and median reaction time (RT) per subject were evaluated using two-sample two-tailed t-tests.
2.4. fMRI data analysis
BOLD data from each subject were pre-processed to remove noise and artifacts (Kang et al., 2003, Miezin et al., 2000). Head motion per BOLD run was quantified using total root mean square (RMS) linear and angular displacement measures. For the main analysis, and in order to match the amount of head movement between the two cohorts, two of the four runs per subject were chosen, so that average total RMS head movement was not significantly different between the two groups. The total RMS is derived from measurements in six directions relative to the first frame acquired across each run. We attempted to match best this total RMS between each typical and each ASD subject. As a result, we did not control for the order of the runs. Results were primarily analyzed from these motion-matched, selected pairs of runs. In addition, as a secondary analysis, results from each individual run and the combined set of four BOLD runs regardless of motion difference across groups were analyzed.
An anatomical average of each subject's cross-aligned BOLD data was registered to his/her MP-RAGE. Spatial normalization was performed using a 12-parameter affine warping of the individual MP-RAGE images to an atlas-representative target as described previously (Kang et al., 2003, Snyder, 1996). The atlas-representative target itself was constructed by 12-parameter affine co-registration of a group of MP-RAGE images representing two groups of 13 young children (ages 7–9) and 12 young adults (ages 21–30). To measure the accuracy of atlas transformations, eta (η) values were derived from the correlation of similarity between the atlas and the morphed MP-RAGE images (Snyder, 1996). η2 is the measure of variance in the source image that is accounted for by variance in the target image (Kang et al., 2003).
To investigate putative differences in the shape of the BOLD time course in Simplex Autism, no assumptions were made about its underlying shape. Preprocessed data were smoothed using a 2 mm full-width half-max kernel, and analyzed using an implementation of the general linear model (GLM). Both a constant offset term and a linear trend term were included in the GLM for each BOLD run. Seven time points (1 TR/MR frame = 2.5 s apart) for each stimulus trial were modeled in the GLM. Significant differences between the two cohorts were tested using a voxelwise group by time course (2 groups × 7 MR frames), sphericity corrected, repeated measures ANOVA (Kang et al., 2003, Miezin et al., 2000), which accounts for correlations in the design (Ollinger et al., 2001a, Ollinger et al., 2001b). The statistical maps were corrected for multiple comparisons using the Monte Carlo method (to achieve significance with P < 0.05, 24 contiguous voxels with a Z score >3.5 are needed) (Kang et al., 2003, McAvoy et al., 2001). In-house software (FIDL), was used to perform these analyses. Activated regions were identified in the statistical map generated from the main effect of time course. Effects of diagnosis were examined using the group by time course interaction statistical map. The group by time course interaction measures shape differences between the BOLD signals from the two cohorts. As alluded to above, five additional group by time repeated measures ANOVAs were performed to confirm the lack of a significant group by time interaction: one ANOVA combining all four runs per subject, and one ANOVA for each individual run per subject.
To assess potential differences further, ROIs were delineated from the main effect of time course map via a peak-finding algorithm as described elsewhere (Kang et al., 2003, Miezin et al., 2000). Time courses, averaged over the activated voxels, were derived per ROI and subject. Time courses for each ROI were entered into a group by time repeated measures ANOVA for subsequent analysis.
3. Results
Behavioral performance was examined in terms of both accuracy and RT. No differences in onset (T30 = 1.197, P = 0.241) and offset (T17.057 = −1.630, P = 0.121) RTs were observed between Simplex Autism and typical cohorts. No significant differences were found between Simplex Autism and typical cohorts for onset and offset omissions (all P > 0.09). Omissions and incorrect responses represented less than 6% of all trials per subject.
3.1. Primary analysis: two runs per subject matched for differences in motion between Simplex Autism and typical cohorts
For the primary analysis, where two runs per subject were chosen in order to control for head movement, no significant differences in head movement were observed between the Simplex Autism and typical children (T30 = 0.482, P = 0.633). Mean RMS values for each group were under 1 mm (0.57 mm for Simplex Autism, 0.51 mm for typical). Mean η2 values were similar between Simplex Autism (0.9902) and typical (0.9909) groups, and means were not statistically different (T21.98 = 1.734, P = 0.097).
After correcting for multiple comparisons, the voxelwise ANOVA revealed significant main effects of time course (Fig. 1a, top), but no group by time course interactions (Fig. 1a, bottom). A subset of participants (12 Simplex Autism and 12 typical participants), matched for both motion (P = 0.33) and full-scale IQ (Simplex Autism FSIQ = 111 ± 8, typical FSIQ = 113 ± 9, P = 0.53), were also examined to ensure that IQ differences did not mask any group by time interactions. Matching for IQ revealed no Monte-Carlo corrected significant group by time course interactions (Fig. 1b, bottom).
Using a peak-finding algorithm, 67 ROIs were found that showed significant time courses in the main effect analysis. Of these 67 ROIs, 19 were chosen to sample varying vascular distributions. Average time courses were computed for the 19 delineated ROIs for Simplex Autism and typical cohorts. Fig. 2 shows time courses for regions fed by anterior and middle cerebral arteries. Fig. 3 shows time courses for regions fed by the perforating branches from the posterior cerebral artery. Fig. 4 shows time courses for regions fed by the posterior cerebral artery. Fig. 5 shows time courses for regions fed by the superior cerebellar artery. The individual time courses were entered into group by time repeated measures ANOVAs for subsequent analyses (Table 2, motion matched subjects; Table 3, motion and IQ matched). No significant diagnosis by time course interaction effects were found (all P values >0.1).
Table 2.
Region | Time course × group repeated measures ANOVAs |
||||||
---|---|---|---|---|---|---|---|
X | Y | Z | Df | F | P | Partial η2 | |
Right motor | 39 | −23 | 55 | 3.86, 115.76 | 0.18 | 0.94 | 0.006 |
SMA | −1 | −4 | 57 | 3.85, 115.53 | 0.17 | 0.95 | 0.005 |
Left motor | −38 | −28 | 59 | 3.75, 112.48 | 0.14 | 0.96 | 0.005 |
Right insula | 40 | 8 | 10 | 3.80, 114.09 | 0.35 | 0.83 | 0.012 |
Left insula | −38 | 8 | 11 | 3.86, 115.65 | 0.36 | 0.83 | 0.012 |
Right putamen | 23 | 4 | 9 | 3.44, 103.31 | 0.56 | 0.67 | 0.018 |
Left putamen | −22 | 3 | 9 | 3.16, 94.78 | 0.28 | 0.85 | 0.009 |
Right thalamus | 12 | −22 | 11 | 3.81, 114.28 | 0.45 | 0.76 | 0.015 |
Left thalamus | −9 | −23 | 12 | 3.58, 107.50 | 0.43 | 0.76 | 0.014 |
Right LGN | 19 | −33 | 1 | 3.93, 117.89 | 1.08 | 0.37 | 0.035 |
Left LGN | −20 | −31 | 0 | 3.78, 113.51 | 0.46 | 0.75 | 0.015 |
Right fusiform | 28 | −71 | −10 | 3.94, 118.27 | 0.80 | 0.52 | 0.026 |
Left fusiform | −27 | −65 | −11 | 3.69, 110.74 | 0.68 | 0.60 | 0.022 |
Right visual | 19 | −87 | −12 | 3.99, 119.71 | 1.52 | 0.20 | 0.048 |
Left visual | −23 | −88 | −12 | 3.75, 112.51 | 1.77 | 0.14 | 0.056 |
Right visual | 15 | −96 | −5 | 3.59, 107.59 | 2 | 0.11 | 0.063 |
Left visual | −13 | −91 | −9 | 3.98, 119.52 | 1.09 | 0.37 | 0.035 |
Right cerebellum | 36 | −51 | −25 | 3.57, 107.17 | 0.98 | 0.42 | 0.032 |
Left cerebellum | −32 | −53 | −20 | 3.93, 117.99 | 0.59 | 0.67 | 0.019 |
Table 3.
Region | Time course × group repeated measures ANOVAs: IQ matched |
||||||
---|---|---|---|---|---|---|---|
X | Y | Z | Df | F | P | Partial η2 | |
Right motor | 39 | −23 | 55 | 3.72, 81.9 | 0.57 | 0.67 | 0.025 |
SMA | −1 | −4 | 57 | 3.82, 84.1 | 0.5 | 0.81 | 0.022 |
Left motor | −38 | −28 | 59 | 3.05, 67.18 | 0.74 | 0.53 | 0.033 |
Right insula | 40 | 8 | 10 | 3.28, 72.14 | 0.82 | 0.5 | 0.036 |
Left insula | −38 | 8 | 11 | 3.3, 72.49 | 0.79 | 0.52 | 0.035 |
Right putamen | 23 | 4 | 9 | 2.96, 65.07 | 0.86 | 0.46 | 0.038 |
Left putamen | −22 | 3 | 9 | 2.75, 60.42 | 0.63 | 0.59 | 0.028 |
Right thalamus | 12 | −22 | 11 | 6, 132 | 0.29 | 0.94 | 0.013 |
Left thalamus | −9 | −23 | 12 | 4.14, 91.08 | 0.17 | 0.96 | 0.008 |
Right LGN | 19 | −33 | 1 | 6, 132 | 1.03 | 0.41 | 0.045 |
Left LGN | −20 | −31 | 0 | 4.49, 98.68 | 1.08 | 0.37 | 0.047 |
Right fusiform | 28 | −71 | −10 | 4.04, 88.94 | 1.41 | 0.24 | 0.06 |
Left fusiform | −27 | −65 | −11 | 4.05, 89.09 | 2.11 | 0.085 | 0.088 |
Right visual | 19 | −87 | −12 | 6, 132 | 1.54 | 0.17 | 0.065 |
Left visual | −23 | −88 | −12 | 3.86, 84.76 | 1.75 | 0.15 | 0.074 |
Right visual | 15 | −96 | −5 | 3.94, 86.65 | 1.49 | 0.21 | 0.063 |
Left visual | −13 | −91 | −9 | 3.89, 85.67 | 1.68 | 0.17 | 0.071 |
Right cerebellum | 36 | −51 | −25 | 6, 132 | 1.43 | 0.21 | 0.061 |
Left cerebellum | −32 | −53 | −20 | 3.66, 80.62 | 0.93 | 0.45 | 0.041 |
The Simplex Autism cohort was then split into two groups, those subjects that had been on one or more specific class of medications and those subjects not taking these medications. Each group has 8 subjects. The medications include stimulants, anti-psychotics, and selective serotonin reuptake inhibitors (SSRIs). The 19 main effect ROIs were entered into group (medicated/not) by time course repeated measures ANOVAs, and no significant effects were observed (all P values >0.1).
3.2. Examination of group by time interactions found in the primary analysis at a liberal threshold
For further assessment, the time course × diagnosis interaction map was examined at an extremely liberal, uncorrected threshold of Z > 1.9. Two ROIs in visual cortex were chosen from the statistical Z map for this liberal time course × group interaction image (Fig. 6). Time courses were extracted from these ROIs and analyzed for group by time interactions using a time course by group repeated measures ANOVA (Table 4). One ROI shows a significant group by time interaction (Fig. 6, top); the other region shows a group by time interaction trend (Fig. 6, bottom).
Table 4.
Region | QC analyses: interactions at uncorrected significance |
||||||
---|---|---|---|---|---|---|---|
X | Y | Z | Df | F | P | Partial η2 | |
Right visual | 15 | −97 | 0 | 3.19, 95.73 | 4.3 | 0.006 | 0.13 |
Right visual | 15 | −91 | −11 | 2.36, 70.68 | 2.8 | 0.06 | 0.085 |
3.3. Secondary analyses: all four runs combined per subject, and each run per subject
To help ensure that the lack of observed differences were not due to the selection of specific runs, all four runs acquired per subject were concatenated and analyzed using a diagnosis by time (2 × 7) repeated measures voxelwise ANOVA. After correcting for multiple comparisons, the voxelwise ANOVA revealed significant main effects of time course (Fig. 7, top), and a small group by time course interaction (Fig. 7, bottom). The region showing a significant interaction overlaps with the region showing an uncorrected interaction in the motion-controlled analysis.
We also ran a group by time course (2 × 7) repeated measures ANOVA for each of the four runs the subjects performed. Because a single run contains fewer trials, the estimates derived from each subject's GLM are weaker, and the ability to detect significant differences is limited. Therefore, the main effect and interaction images from each run were binarized at a threshold of Z > 1.9 and summed into a conjunction image. As shown in the main effect conjunction image, all 19 regions of interest show consistent significant activation for each of the four runs (Fig. 8, top). However, the group by time interaction conjunction image shows a consistent activation for a region in right visual cortex, which is the same region identified in the other secondary analyses (Fig. 8, bottom).
Regardless of whether two motion-matched runs, all four runs, or a conjunction of each individual run is analyzed, the only observed difference between Simplex Autism and typical cohorts is located in a very small portion of right visual cortex. Other regions from multiple vascular distributions show no differences in the hemodynamic response between Simplex Autism and typical cohorts.
4. Discussion
Through this study of BOLD time courses, we found that the hemodynamic response appears comparable between Simplex Autism and typical cohorts. Head motion can potentially induce artifacts in fMRI data, which can create false positive and false negative observations. When head motion was best matched between the two groups, no significant group effects were found. When groups were IQ and motion matched, no significant group by time interactions in the BOLD response were observed.
Comparisons of medicated to non-medicated Simplex Autism subjects revealed no significant differences in BOLD activity. It should be noted that this observation is limited due to very small numbers in each cell. It is also possible that different medications could have differing or opposing effects on the hemodynamic response. Nevertheless, the data acquired show no evidence that the combined effect of medications commonly used in people with ASD impacts the hemodynamic response in this sample.
The present study represents a first step in testing whether the hemodynamic response in autism is distinguishable from typically developing children. By using a task sufficiently simple that we can assume that the two groups are performing the task similarly (Church et al., 2012, Harris et al., 2011), demonstrable differences in BOLD response could be interpreted as evidence for an altered hemodynamic response in autism. As stated above, our approach yielded no compelling evidence for Simplex Autism versus control differences in the shape of the task-evoked BOLD signal, in multiple comparisons-corrected analyses of motion-matched BOLD runs. There are several limitations, discussed immediately below.
When head motion was ignored or statistical thresholding was relaxed far below what we would consider appropriate in reporting an “fMRI effect,” a small region located in right visual cortex appears to be significantly different between Simplex Autism and typical cohorts. One could argue that this difference may represent an altered hemodynamic response localized exclusively to a small portion of right visual cortex. However, it is possible that the difference observed in right visual cortex may relate to an unmeasured behavior. Visual fixation was only qualitatively assessed, and because people with autism may have trouble with oculomotor control (Goldberg et al., 2000, Goldberg et al., 2002, Luna et al., 2007, Minshew et al., 1999) and fixating a point (Mahone et al., 2006, Pruett et al., 2011), it is possible that small differences in visual fixation may have led to some small differences in visual cortical activity. Because lurking variables can potentially confound the interpretation of fMRI data, it is important to be cautious in estimating the statistical significance of an effect, in interpreting a single finding, and in rigorously examining the quality of the data (Church et al., 2012).
The data presented here only directly pertain to neural processing resources that are engaged in this particular task. Combined electrophysiological and fMRI recordings from mice have shown that different neurons, even within the same brain region (Enager et al., 2009), differ in their neurovascular coupling (Devonshire et al., 2012, Sloan et al., 2010). Therefore, it is possible that driving other populations of neurons might show differentials in fMRI responses.
Our claim, that the hemodynamic response is not altered in autism, is an operational claim, for our data do not measure neural activity directly. One interpretation of this operational claim is that the neurovascular coupling is comparable between autistic and typical cohorts. However, it is theoretically possible that some combination of altered neural activity and altered neurovascular coupling could negate each other, leaving no observed differences in BOLD activity in multiple vascular distributions. Combining MEG and/or EEG with fMRI acquisition might directly address this possibility, by providing convergent electrophysiological data that can dissociate effects of neural activity from effects of neurovascular coupling.
Because these limitations assume that both neural activity and neurovascular coupling are altered in autism, these limitations would seem to be more troubling if robust BOLD response differences were observed between the two groups. However, the data presented here show scant evidence of any meaningful difference in the hemodynamic response in ASD at these sample sizes for neural populations that are responsive to this task. A lack of significant group by time course interactions does not indicate that the hemodynamic response is completely “normal” in Simplex Autism. However, it is encouraging to see that the hemodynamic response appears comparable in multiple vascular distributions during a simple straightforward task. This finding is important for autism fMRI/fcMRI research because it indicates that, for studies of a similar sample size, when strong autism versus control differences are seen with BOLD contrast in the regions investigated in this study, the observation is more likely not attributable to differential neurovascular coupling, but reflects differences in underlying neural activity.
Conflict of interest statement
Eric Feczko reports no biomedical financial interest or potential conflicts of interest. Francis Miezin reports no biomedical financial interest or potential conflicts of interest. Dr. Schlaggar reports no biomedical financial interest or potential conflicts of interest. Dr. Constantino receives royalties on the Social Responsiveness Scale, which is published and distributed by Western Psychological Services. Dr. Petersen reports no biomedical financial interest or potential conflicts of interest. Dr. Pruett reports no biomedical financial interest or potential conflicts of interest.
Acknowledgments
This work was supported by a grant from the Simons Foundation Autism Research Initiative (“Brain Circuitry in Simplex Autism,” Steven Petersen – PI). John Pruett's effort was supported by K12 EY16336. We thank Sarah Hoertel, for coordinating recruitment, scheduling, and assessments of the subjects. We also thank Kelly McVey for help with recruitment, scheduling, assessing, and scanning subjects. We thank Jen Simmons, Anna Abbacchi, Teddi Gray and others from the Constantino lab for assessing and/or recruiting subjects. We would also like to thank Dan Marcus and his lab for database support.
References
- Cherkassky V.L., Kana R.K., Keller T.A., Just M.A. Functional connectivity in a baseline resting-state network in autism. Neuroreport. 2006;17(16):1687–1690. doi: 10.1097/01.wnr.0000239956.45448.4c. [DOI] [PubMed] [Google Scholar]
- Church J.A., Balota D.A., Petersen S.E., Schlaggar B.L. Manipulation of length and lexicality localizes the functional neuroanatomy of phonological processing in adult readers. Journal of Cognitive Neuroscience. 2011;23(6):1475–1493. doi: 10.1162/jocn.2010.21515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Church J.A., Petersen S.E., Schlaggar B.L. Comment on “The physiology of developmental changes in BOLD functional imaging signals” by Harris, Reynell, and Attwell. Developmental Cognitive Neuroscience. 2012;2(2):220–222. doi: 10.1016/j.dcn.2011.10.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen J.D., MacWhinney B., Flatt M., Provost J. PsyScope: a new graphic interactive environment for designing psychology experiments. Behavioral Research Methods, Instruments, and Computers. 1993;25(2):257–271. [Google Scholar]
- Devonshire I.M., Papadakis N.G., Port M., Berwick J., Kennerley A.J., Mayhew J.E., Overton P.G. Neurovascular coupling is brain region-dependent. NeuroImage. 2012;59(3):1997–2006. doi: 10.1016/j.neuroimage.2011.09.050. [DOI] [PubMed] [Google Scholar]
- Enager P., Piilgaard H., Offenhauser N., Kocharyan A., Fernandes P., Hamel E., Lauritzen M. Pathway-specific variations in neurovascular and neurometabolic coupling in rat primary somatosensory cortex. Journal of Cerebral Blood Flow and Metabolism. 2009;29(5):976–986. doi: 10.1038/jcbfm.2009.23. [DOI] [PubMed] [Google Scholar]
- Goldberg M.C., Landa R., Lasker A., Cooper L., Zee D.S. Evidence of normal cerebellar control of the vestibulo-ocular reflex (VOR) in children with high-functioning autism. Journal of Autism and Developmental Disorders. 2000;30(6):519–524. doi: 10.1023/a:1005631225367. [DOI] [PubMed] [Google Scholar]
- Goldberg M.C., Lasker A.G., Zee D.S., Garth E., Tien A., Landa R.J. Deficits in the initiation of eye movements in the absence of a visual target in adolescents with high functioning autism. Neuropsychologia. 2002;40(12):2039–2049. doi: 10.1016/s0028-3932(02)00059-3. [DOI] [PubMed] [Google Scholar]
- Gomot M., Belmonte M.K., Bullmore E.T., Bernard F.A., Baron-Cohen S. Brain hyper-reactivity to auditory novel targets in children with high-functioning autism. Brain. 2008;131(Pt 9):2479–2488. doi: 10.1093/brain/awn172. [DOI] [PubMed] [Google Scholar]
- Harris J.J., Reynell C., Attwell D. The physiology of developmental changes in BOLD functional imaging signals. Developmental Cognitive Neuroscience. 2011;1(3):199–216. doi: 10.1016/j.dcn.2011.04.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaiser M.D., Hudac C.M., Shultz S., Lee S.M., Cheung C., Berken A.M., Deen B., Pitskel N.B., Sugrue D.R., Voos A.C. Neural signatures of autism. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(49):21223–21228. doi: 10.1073/pnas.1010412107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kang H.C., Burgund E.D., Lugar H.M., Petersen S.E., Schlaggar B.L. Comparison of functional activation foci in children and adults using a common stereotactic space. NeuroImage. 2003;19(1):16–28. doi: 10.1016/s1053-8119(03)00038-7. [DOI] [PubMed] [Google Scholar]
- Kennedy D.P., Courchesne E. The intrinsic functional organization of the brain is altered in autism. NeuroImage. 2008;39(4):1877–1885. doi: 10.1016/j.neuroimage.2007.10.052. [DOI] [PubMed] [Google Scholar]
- Logothetis N.K., Pauls J., Augath M., Trinath T., Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001;412:150–157. doi: 10.1038/35084005. [DOI] [PubMed] [Google Scholar]
- Lord C., Risi S., Lambrecht L., Cook E.H., Jr., Leventhal B.L., DiLavore P.C., Pickles A., Rutter M. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders. 2000;30(3):205–223. [PubMed] [Google Scholar]
- Lord C., Rutter M., Le Couteur A. Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders. 1994;24(5):659–685. doi: 10.1007/BF02172145. [DOI] [PubMed] [Google Scholar]
- Luna B., Doll S.K., Hegedus S.J., Minshew N.J., Sweeney J.A. Maturation of executive function in autism. Biological Psychiatry. 2007;61(4):474–481. doi: 10.1016/j.biopsych.2006.02.030. [DOI] [PubMed] [Google Scholar]
- Mahone E.M., Powell S.K., Loftis C.W., Goldberg M.C., Denckla M.B., Mostofsky S.H. Motor persistence and inhibition in autism and ADHD. Journal of the International Neuropsychological Society. 2006;12(5):622–631. doi: 10.1017/S1355617706060814. [DOI] [PubMed] [Google Scholar]
- McAvoy M.P., Ollinger J.M., Buckner R.L. Cluster size thresholds for assessment of significant activation in fMRI. NeuroImage. 2001;13(6):S198. [Google Scholar]
- Miezin F.M., Maccotta L., Ollinger J.M., Petersen S.E., Buckner R.L. Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. NeuroImage. 2000;11:735–759. doi: 10.1006/nimg.2000.0568. [DOI] [PubMed] [Google Scholar]
- Minshew N.J., Luna B., Sweeney J.A. Oculomotor evidence for neocortical systems but not cerebellar dysfunction in autism. Neurology. 1999;52(5):917–922. doi: 10.1212/wnl.52.5.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Monk C.S., Peltier S.J., Wiggins J.L., Weng S.J., Carrasco M., Risi S., Lord C. Abnormalities of intrinsic functional connectivity in autism spectrum disorders. NeuroImage. 2009;47(2):764–772. doi: 10.1016/j.neuroimage.2009.04.069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mostofsky S.H., Powell S.K., Simmonds D.J., Goldberg M.C., Caffo B., Pekar J.J. Decreased connectivity and cerebellar activity in autism during motor task performance. Brain. 2009;132(Pt 9):2413–2425. doi: 10.1093/brain/awp088. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muller R.A., Kleinhans N., Kemmotsu N., Pierce K., Courchesne E. Abnormal variability and distribution of functional maps in autism: an fMRI study of visuomotor learning. American Journal of Psychiatry. 2003;160(10):1847–1862. doi: 10.1176/appi.ajp.160.10.1847. [DOI] [PubMed] [Google Scholar]
- Noonan S.K., Haist F., Muller R.A. Aberrant functional connectivity in autism: evidence from low-frequency BOLD signal fluctuations. Brain Research. 2009;1262:48–63. doi: 10.1016/j.brainres.2008.12.076. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ollinger J.M., Corbetta M., Shulman G.L. Separating processes within a trial in event-related functional MRI II. Analysis. NeuroImage. 2001;13(1):218–229. doi: 10.1006/nimg.2000.0711. [DOI] [PubMed] [Google Scholar]
- Ollinger J.M., Shulman G.L., Corbetta M. Separating processes within a trial in event-related functional MRI I. The method. NeuroImage. 2001;13(1):210–217. doi: 10.1006/nimg.2000.0710. [DOI] [PubMed] [Google Scholar]
- Pruett J.R., Jr., Lamacchia A., Hoertel S., Squire E., McVey K., Todd R.D., Constantino J.N., Petersen S.E. Social and non-social cueing of visuospatial attention in autism and typical development. Journal of Autism and Developmental Disorders. 2011;41(6):715–731. doi: 10.1007/s10803-010-1090-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sloan H.L., Austin V.C., Blamire A.M., Schnupp J.W., Lowe A.S., Allers K.A., Matthews P.M., Sibson N.R. Regional differences in neurovascular coupling in rat brain as determined by fMRI and electrophysiology. NeuroImage. 2010;53(2):399–411. doi: 10.1016/j.neuroimage.2010.07.014. [DOI] [PubMed] [Google Scholar]
- Snyder A.Z. Difference image vs. ratio image error function forms in PET–PET realignment. In: Myer R., Cunningham V.J., Bailey D.L., Jones T., editors. Quantification of Brain Function Using PET. Academic Press; San Diego, CA: 1996. pp. 131–137. [Google Scholar]
- Weng S.J., Wiggins J.L., Peltier S.J., Carrasco M., Risi S., Lord C., Monk C.S. Alterations of resting state functional connectivity in the default network in adolescents with autism spectrum disorders. Brain Research. 2010;1313:202–214. doi: 10.1016/j.brainres.2009.11.057. [DOI] [PMC free article] [PubMed] [Google Scholar]