Skip to main content
European Spine Journal logoLink to European Spine Journal
. 1998 Dec;7(6):471–479. doi: 10.1007/s005860050110

Synergy of the human spine in neutral postures

A Kiefer 1, A Shirazi-Adl 1, M Parnianpour 2
PMCID: PMC3611302  PMID: 9883956

Abstract

The neutral position of the spine is the posture most commonly sustained throughout daily activities. Previous investigations of the spine focused mainly on maximal exertions in various symmetric and asymmetric postures. This report proposes a new synergetic approach for analysis of the spine in neutral postures and evaluates its performance. The model consists of passive components, the osteoligamentous spine, and active components, the spinal muscles. The muscle architecture includes 60 muscles inserting onto both the rib cage and lumbar vertebral bodies. The passive spine is simulated by a finite element model, while kinematic constraints and optimization are used for resolution of a redundant muscle recruitment problem. Although the passive spine alone exhibits little resistance to a vertical load, its load-bearing capacity in neutral posture is significantly enhanced by the muscles, i.e., the passive spine and its muscles must be considered as a synergetic system. The proposed method is used to investigate the response of the spine when the T1 vertebra displaces 40 mm anteriorly and 20 mm posteriorly from its initial position. The sacrum is fixed at all times and the T1 displacements are achieved by the action of muscles. The results suggest that relatively small muscle activations are sufficient to stabilize the spine in neutral posture under the body weight. The results also indicate that muscles attaching onto the rib cage are important for control of the overall spinal posture and maintenance of equilibrium. The muscles inserting onto the lumbar vertebrae are found mainly to enhance the stability of the spine. The proposed method also predicts forces and moments carried by the passive system. Flexion moments ranging from 8000 Nmm to 15,000 Nmm, corresponding to decreases in lordosis of 6° and 7.5° respectively, are found to be carried by the passive spine at the thoracolumbar junction when the T1 vertebra is 40 mm anterior to its initial position.

Keywords: Key words Synergy, Passive spine, Muscles, Equilibrium, Stability

Full Text

The Full Text of this article is available as a PDF (194.2 KB).

Footnotes

Received: 7 October 1997 Revised: 8 May 1998 Accepted: 25 May 1998


Articles from European Spine Journal are provided here courtesy of Springer-Verlag

RESOURCES