Skip to main content
European Spine Journal logoLink to European Spine Journal
. 2002 Jun 4;11(Suppl 2):S198–S205. doi: 10.1007/s00586-002-0422-x

Rationale, principles and experimental evaluation of the concept of soft stabilization

Robert C Mulholland 1, Dilip K Sengupta 1
PMCID: PMC3611578  PMID: 12384745

Abstract.

The apparent clinical success of spinal stabilization methods that restrict rather than abolish movement in relieving mechanical back pain indicates that the concept of the aetiology of back pain should be reviewed. Further understanding of how degeneration affects disc biomechanics, and an understanding of how current soft stabilization systems alters them, may allow us to define more precisely what are the essential requirements of an ideal soft stabilization system. It appears that abnormal patterns of loading rather than abnormal movement are the reason that disc degeneration causes back pain in some patients. Abnormal load transmission is the principal cause of pain in osteoarthritic joints, and both osteotomy and, indeed, joint replacement succeed because they alter the load transmission across the joint. This concept is supported by the fact that abnormal patterns of stress distribution measured across the disc correlate with painful discs on discography. Clinically, it is often noted that back pain is primarily related to position or posture, rather than movement of the lumbar spine. Clinical success after solid fusion is unpredictable because it does not necessarily prevent painful loading across the disc, and also it may interfere with maintenance of sagittal balance in varying postures. The Graf ligament restricted flexion, and was modestly successful. It unfortunately increased the load over the posterior annulus. The Dynesys system reduces movement both in flexion and extension, and appears to be more successful. However, often it also unloads the disc to a degree that is unpredictable. The authors believe that this unloading of the disc is an important feature of a flexible stabilization system. A new a design of a flexible stabilization system has recently been described in an in vitro study, which unloads the disc by introduction of a load-sharing fulcrum near the axis of movement together with an elastic posterior ligament. This design produces maximal unloading of the disc, whilst allowing a restricted range of movement, which serves the important purpose of allowing the patient to maintain sagittal balance in varying postures.

Keywords: Soft stabilization Disc degeneration Low-back pain

Full Text

The Full Text of this article is available as a PDF (203.8 KB).

Footnotes

Electronic Publication


Articles from European Spine Journal are provided here courtesy of Springer-Verlag

RESOURCES