Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1991 Aug;11(8):3905–3914. doi: 10.1128/mcb.11.8.3905

Diverse gene sequences are overexpressed in werner syndrome fibroblasts undergoing premature replicative senescence.

S Murano 1, R Thweatt 1, R J Shmookler Reis 1, R A Jones 1, E J Moerman 1, S Goldstein 1
PMCID: PMC361182  PMID: 1712899

Abstract

Genes that play a role in the senescent arrest of cellular replication are likely to be overexpressed in human diploid fibroblasts (HDF) derived from subjects with Werner syndrome (WS) because these cells have a severely curtailed replicative life span. To identify some of these genes, a cDNA library was constructed from WS HDF after they had been serum depleted and repleted (5 days in medium containing 1% serum followed by 24 h in medium containing 20% serum). Differential screening of 7,500 colonies revealed 102 clones that hybridized preferentially with [32P]cDNA derived from RNA of WS cells compared with [32P]cDNA derived from normal HDF. Cross-hybridization and partial DNA sequence determination identified 18 independent gene sequences, 9 of them known and 9 unknown. The known genes included alpha 1(I) procollagen, alpha 2(I) procollagen, fibronectin, ferritin heavy chain, insulinlike growth factor-binding protein-3 (IGFBP-3), osteonectin, human tissue plasminogen activator inhibitor type I, thrombospondin, and alpha B-crystallin. The nine unknown clones included two novel gene sequences and seven additional sequences that contained both novel segments and the Alu class of repetitive short interspersed nuclear elements; five of these seven Alu+ clones also contained the long interpersed nuclear element I (KpnI) family of repetitive elements. Northern (RNA) analysis, using the 18 sequences as probes, showed higher levels of these mRNAs in WS HDF than in normal HDF. Five selected mRNAs studied in greater detail [alpha 1(I) procollagen, fibronectin, insulinlike growth factor-binding protein-3, WS3-10, and WS9-14] showed higher mRNA levels in both WS and late-passage normal HDF than in early-passage normal HDF at various intervals following serum depletion/repletion and after subculture and growth from sparse to high-density confluent arrest. These results indicate that senescence of both WS and normal HDF is accompanied by overexpression of similar sets of diverse genes which may play a role in the senescent arrest of cellular replication and in the genesis of WS, normal biological aging, and attendant diseases.

Full text

PDF
3905

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams S. L., Alwine J. C., de Crombrugghe B., Pastan I. Use of recombinant plasmids to characterize collagen RNAs in normal and transformed chick embryo fibroblasts. J Biol Chem. 1979 Jun 25;254(12):4935–4938. [PubMed] [Google Scholar]
  2. Almendral J. M., Sommer D., Macdonald-Bravo H., Burckhardt J., Perera J., Bravo R. Complexity of the early genetic response to growth factors in mouse fibroblasts. Mol Cell Biol. 1988 May;8(5):2140–2148. doi: 10.1128/mcb.8.5.2140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arakawa M., Hatamochi A., Takeda K., Ueki H. Increased collagen synthesis accompanying elevated m-RNA levels in cultured Werner's syndrome fibroblasts. J Invest Dermatol. 1990 Feb;94(2):187–190. doi: 10.1111/1523-1747.ep12874489. [DOI] [PubMed] [Google Scholar]
  4. Bayreuther K., Rodemann H. P., Hommel R., Dittmann K., Albiez M., Francz P. I. Human skin fibroblasts in vitro differentiate along a terminal cell lineage. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5112–5116. doi: 10.1073/pnas.85.14.5112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boyd D., Vecoli C., Belcher D. M., Jain S. K., Drysdale J. W. Structural and functional relationships of human ferritin H and L chains deduced from cDNA clones. J Biol Chem. 1985 Sep 25;260(21):11755–11761. [PubMed] [Google Scholar]
  6. Brown W. T. Genetic diseases of premature aging as models of senescence. Annu Rev Gerontol Geriatr. 1990;10:23–42. doi: 10.1007/978-3-662-38445-9_2. [DOI] [PubMed] [Google Scholar]
  7. Cheng R. Z., Murano S., Kurz B., Shmookler Reis R. J. Homologous recombination is elevated in some Werner-like syndromes but not during normal in vitro or in vivo senescence of mammalian cells. Mutat Res. 1990 Sep-Nov;237(5-6):259–269. doi: 10.1016/0921-8734(90)90008-f. [DOI] [PubMed] [Google Scholar]
  8. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  9. Chou C. C., Gatti R. A., Fuller M. L., Concannon P., Wong A., Chada S., Davis R. C., Salser W. A. Structure and expression of ferritin genes in a human promyelocytic cell line that differentiates in vitro. Mol Cell Biol. 1986 Feb;6(2):566–573. doi: 10.1128/mcb.6.2.566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chu M. L., de Wet W., Bernard M., Ramirez F. Fine structural analysis of the human pro-alpha 1 (I) collagen gene. Promoter structure, AluI repeats, and polymorphic transcripts. J Biol Chem. 1985 Feb 25;260(4):2315–2320. [PubMed] [Google Scholar]
  11. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Conover C. A., Ronk M., Lombana F., Powell D. R. Structural and biological characterization of bovine insulin-like growth factor binding protein-3. Endocrinology. 1990 Dec;127(6):2795–2803. doi: 10.1210/endo-127-6-2795. [DOI] [PubMed] [Google Scholar]
  13. Cristofalo V. J., Doggett D. L., Brooks-Frederich K. M., Phillips P. D. Growth factors as probes of cell aging. Exp Gerontol. 1989;24(5-6):367–374. doi: 10.1016/0531-5565(89)90044-2. [DOI] [PubMed] [Google Scholar]
  14. Davis R. C., Thomason A. R., Fuller M. L., Slovin J. P., Chou C. C., Chada S., Gatti R. A., Salser W. A. mRNA species regulated during the differentiation of HL-60 cells to macrophages and neutrophils. Dev Biol. 1987 Jan;119(1):164–174. doi: 10.1016/0012-1606(87)90218-1. [DOI] [PubMed] [Google Scholar]
  15. De Mellow J. S., Baxter R. C. Growth hormone-dependent insulin-like growth factor (IGF) binding protein both inhibits and potentiates IGF-I-stimulated DNA synthesis in human skin fibroblasts. Biochem Biophys Res Commun. 1988 Oct 14;156(1):199–204. doi: 10.1016/s0006-291x(88)80824-6. [DOI] [PubMed] [Google Scholar]
  16. Deininger P. L., Jolly D. J., Rubin C. M., Friedmann T., Schmid C. W. Base sequence studies of 300 nucleotide renatured repeated human DNA clones. J Mol Biol. 1981 Sep 5;151(1):17–33. doi: 10.1016/0022-2836(81)90219-9. [DOI] [PubMed] [Google Scholar]
  17. Dubin R. A., Ally A. H., Chung S., Piatigorsky J. Human alpha B-crystallin gene and preferential promoter function in lens. Genomics. 1990 Aug;7(4):594–601. doi: 10.1016/0888-7543(90)90204-8. [DOI] [PubMed] [Google Scholar]
  18. Duguid J. R., Rohwer R. G., Seed B. Isolation of cDNAs of scrapie-modulated RNAs by subtractive hybridization of a cDNA library. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5738–5742. doi: 10.1073/pnas.85.15.5738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Engel J., Taylor W., Paulsson M., Sage H., Hogan B. Calcium binding domains and calcium-induced conformational transition of SPARC/BM-40/osteonectin, an extracellular glycoprotein expressed in mineralized and nonmineralized tissues. Biochemistry. 1987 Nov 3;26(22):6958–6965. doi: 10.1021/bi00396a015. [DOI] [PubMed] [Google Scholar]
  20. Epstein C. J., Martin G. M., Schultz A. L., Motulsky A. G. Werner's syndrome a review of its symptomatology, natural history, pathologic features, genetics and relationship to the natural aging process. Medicine (Baltimore) 1966 May;45(3):177–221. doi: 10.1097/00005792-196605000-00001. [DOI] [PubMed] [Google Scholar]
  21. Erickson J. M., Rushford C. L., Dorney D. J., Wilson G. N., Schmickel R. D. Structure and variation of human ribosomal DNA: molecular analysis of cloned fragments. Gene. 1981 Dec;16(1-3):1–9. doi: 10.1016/0378-1119(81)90055-x. [DOI] [PubMed] [Google Scholar]
  22. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  23. Fukuchi K., Martin G. M., Monnat R. J., Jr Mutator phenotype of Werner syndrome is characterized by extensive deletions. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5893–5897. doi: 10.1073/pnas.86.15.5893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Funk S. E., Sage E. H. The Ca2(+)-binding glycoprotein SPARC modulates cell cycle progression in bovine aortic endothelial cells. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2648–2652. doi: 10.1073/pnas.88.7.2648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ginsburg D., Zeheb R., Yang A. Y., Rafferty U. M., Andreasen P. A., Nielsen L., Dano K., Lebo R. V., Gelehrter T. D. cDNA cloning of human plasminogen activator-inhibitor from endothelial cells. J Clin Invest. 1986 Dec;78(6):1673–1680. doi: 10.1172/JCI112761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Giordano T., Foster D. N. Identification of a highly abundant cDNA isolated from senescent WI-38 cells. Exp Cell Res. 1989 Dec;185(2):399–406. doi: 10.1016/0014-4827(89)90310-8. [DOI] [PubMed] [Google Scholar]
  27. Goldstein S., Murano S., Benes H., Moerman E. J., Jones R. A., Thweatt R., Shmookler Reis R. J., Howard B. H. Studies on the molecular-genetic basis of replicative senescence in Werner syndrome and normal fibroblasts. Exp Gerontol. 1989;24(5-6):461–468. doi: 10.1016/0531-5565(89)90052-1. [DOI] [PubMed] [Google Scholar]
  28. Goldstein S., Niewiarowski S. Increased procoagulant activity in cultured fibroblasts from progeria and Werner's syndromes of premature ageing. Nature. 1976 Apr 22;260(5553):711–713. doi: 10.1038/260711a0. [DOI] [PubMed] [Google Scholar]
  29. Goldstein S. Replicative senescence: the human fibroblast comes of age. Science. 1990 Sep 7;249(4973):1129–1133. doi: 10.1126/science.2204114. [DOI] [PubMed] [Google Scholar]
  30. Good D. J., Polverini P. J., Rastinejad F., Le Beau M. M., Lemons R. S., Frazier W. A., Bouck N. P. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6624–6628. doi: 10.1073/pnas.87.17.6624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Grunstein M., Hogness D. S. Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3961–3965. doi: 10.1073/pnas.72.10.3961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Gubler U., Hoffman B. J. A simple and very efficient method for generating cDNA libraries. Gene. 1983 Nov;25(2-3):263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
  33. Gutman A., Kornblihtt A. R. Identification of a third region of cell-specific alternative splicing in human fibronectin mRNA. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7179–7182. doi: 10.1073/pnas.84.20.7179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. HAYFLICK L. THE LIMITED IN VITRO LIFETIME OF HUMAN DIPLOID CELL STRAINS. Exp Cell Res. 1965 Mar;37:614–636. doi: 10.1016/0014-4827(65)90211-9. [DOI] [PubMed] [Google Scholar]
  35. Holland P. W., Harper S. J., McVey J. H., Hogan B. L. In vivo expression of mRNA for the Ca++-binding protein SPARC (osteonectin) revealed by in situ hybridization. J Cell Biol. 1987 Jul;105(1):473–482. doi: 10.1083/jcb.105.1.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Howard B. H., Sakamoto K. Alu interspersed repeats: selfish DNA or a functional gene family? New Biol. 1990 Sep;2(9):759–770. [PubMed] [Google Scholar]
  37. Iwaki A., Iwaki T., Goldman J. E., Liem R. K. Multiple mRNAs of rat brain alpha-crystallin B chain result from alternative transcriptional initiation. J Biol Chem. 1990 Dec 25;265(36):22197–22203. [PubMed] [Google Scholar]
  38. Iwaki T., Kume-Iwaki A., Liem R. K., Goldman J. E. Alpha B-crystallin is expressed in non-lenticular tissues and accumulates in Alexander's disease brain. Cell. 1989 Apr 7;57(1):71–78. doi: 10.1016/0092-8674(89)90173-6. [DOI] [PubMed] [Google Scholar]
  39. Johnson B. D., Page R. C., Narayanan A. S., Pieters H. P. Effects of donor age on protein and collagen synthesis in vitro by human diploid fibroblasts. Lab Invest. 1986 Oct;55(4):490–496. [PubMed] [Google Scholar]
  40. Klemenz R., Fröhli E., Steiger R. H., Schäfer R., Aoyama A. Alpha B-crystallin is a small heat shock protein. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3652–3656. doi: 10.1073/pnas.88.9.3652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Koga Y., Lindstrom E., Fenyo E. M., Wigzell H., Mak T. W. High levels of heterodisperse RNAs accumulate in T cells infected with human immunodeficiency virus and in normal thymocytes. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4521–4525. doi: 10.1073/pnas.85.12.4521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Labat-Robert J., Robert L. Aging of the extracellular matrix and its pathology. Exp Gerontol. 1988;23(1):5–18. doi: 10.1016/0531-5565(88)90015-0. [DOI] [PubMed] [Google Scholar]
  43. Lau L. F., Nathans D. Expression of a set of growth-related immediate early genes in BALB/c 3T3 cells: coordinate regulation with c-fos or c-myc. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1182–1186. doi: 10.1073/pnas.84.5.1182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Leibold D. M., Swergold G. D., Singer M. F., Thayer R. E., Dombroski B. A., Fanning T. G. Translation of LINE-1 DNA elements in vitro and in human cells. Proc Natl Acad Sci U S A. 1990 Sep;87(18):6990–6994. doi: 10.1073/pnas.87.18.6990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Lumpkin C. K., Jr, McClung J. K., Pereira-Smith O. M., Smith J. R. Existence of high abundance antiproliferative mRNA's in senescent human diploid fibroblasts. Science. 1986 Apr 18;232(4748):393–395. doi: 10.1126/science.2421407. [DOI] [PubMed] [Google Scholar]
  46. Mann D. M., McKeown-Longo P. J., Millis A. J. Binding of soluble fibronectin and its subsequent incorporation into the extracellular matrix by early and late passage human skin fibroblasts. J Biol Chem. 1988 Feb 25;263(6):2756–2760. [PubMed] [Google Scholar]
  47. Maquart F. X., Bellon G., Gillery P., Borel J. P., Labeille B., Risbourg B., Denoeux J. P. Increased secretion of fibronectin and collagen by progeria (Hutchinson-Gilford) fibroblasts. Eur J Pediatr. 1988 May;147(4):442–442. doi: 10.1007/BF00496432. [DOI] [PubMed] [Google Scholar]
  48. Martin G. M., Sprague C. A., Epstein C. J. Replicative life-span of cultivated human cells. Effects of donor's age, tissue, and genotype. Lab Invest. 1970 Jul;23(1):86–92. [PubMed] [Google Scholar]
  49. Martin J. L., Baxter R. C. Insulin-like growth factor-binding protein from human plasma. Purification and characterization. J Biol Chem. 1986 Jul 5;261(19):8754–8760. [PubMed] [Google Scholar]
  50. Mason I. J., Taylor A., Williams J. G., Sage H., Hogan B. L. Evidence from molecular cloning that SPARC, a major product of mouse embryo parietal endoderm, is related to an endothelial cell 'culture shock' glycoprotein of Mr 43,000. EMBO J. 1986 Jul;5(7):1465–1472. doi: 10.1002/j.1460-2075.1986.tb04383.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Mosher D. F. Physiology of thrombospondin. Annu Rev Med. 1990;41:85–97. doi: 10.1146/annurev.me.41.020190.000505. [DOI] [PubMed] [Google Scholar]
  52. Okayama H., Kawaichi M., Brownstein M., Lee F., Yokota T., Arai K. High-efficiency cloning of full-length cDNA; construction and screening of cDNA expression libraries for mammalian cells. Methods Enzymol. 1987;154:3–28. doi: 10.1016/0076-6879(87)54067-8. [DOI] [PubMed] [Google Scholar]
  53. Owen T. A., Carter R., Whitman M. M., Soprano D. R., Soprano K. J. Evidence that density-dependent growth arrest is a two-stage process in WI-38 cells. J Cell Physiol. 1990 Jan;142(1):137–148. doi: 10.1002/jcp.1041420117. [DOI] [PubMed] [Google Scholar]
  54. Paz M. A., Gallop P. M. Collagen synthesized and modified by aging fibroblasts in culture. In Vitro. 1975 Sep-Oct;11(5):302–312. doi: 10.1007/BF02615641. [DOI] [PubMed] [Google Scholar]
  55. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Ponte P., Ng S. Y., Engel J., Gunning P., Kedes L. Evolutionary conservation in the untranslated regions of actin mRNAs: DNA sequence of a human beta-actin cDNA. Nucleic Acids Res. 1984 Feb 10;12(3):1687–1696. doi: 10.1093/nar/12.3.1687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Rao J. S., Beach R. L., Festoff B. W. Extracellular matrix (ECM) synthesis in muscle cell cultures: quantitative and qualitative studies during myogenesis. Biochem Biophys Res Commun. 1985 Jul 16;130(1):440–446. doi: 10.1016/0006-291x(85)90436-x. [DOI] [PubMed] [Google Scholar]
  58. Ruoslahti E. Fibronectin and its receptors. Annu Rev Biochem. 1988;57:375–413. doi: 10.1146/annurev.bi.57.070188.002111. [DOI] [PubMed] [Google Scholar]
  59. Saksela O., Rifkin D. B. Cell-associated plasminogen activation: regulation and physiological functions. Annu Rev Cell Biol. 1988;4:93–126. doi: 10.1146/annurev.cb.04.110188.000521. [DOI] [PubMed] [Google Scholar]
  60. Salk D., Au K., Hoehn H., Stenchever M. R., Martin G. M. Evidence of clonal attenuation, clonal succession, and clonal expansion in mass cultures of aging Werner's syndrome skin fibroblasts. Cytogenet Cell Genet. 1981;30(2):108–117. doi: 10.1159/000131597. [DOI] [PubMed] [Google Scholar]
  61. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Schmidt A., Setoyama C., de Crombrugghe B. Regulation of a collagen gene promoter by the product of viral mos oncogene. Nature. 1985 Mar 21;314(6008):286–289. doi: 10.1038/314286a0. [DOI] [PubMed] [Google Scholar]
  63. Schneider C., King R. M., Philipson L. Genes specifically expressed at growth arrest of mammalian cells. Cell. 1988 Sep 9;54(6):787–793. doi: 10.1016/s0092-8674(88)91065-3. [DOI] [PubMed] [Google Scholar]
  64. Shafit-Zagardo B., Maio J. J., Brown F. L. KpnI families of long, interspersed repetitive DNAs in human and other primate genomes. Nucleic Acids Res. 1982 May 25;10(10):3175–3193. doi: 10.1093/nar/10.10.3175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Srivastava A., Norris J. S., Shmookler Reis R. J., Goldstein S. c-Ha-ras-1 proto-oncogene amplification and overexpression during the limited replicative life span of normal human fibroblasts. J Biol Chem. 1985 May 25;260(10):6404–6409. [PubMed] [Google Scholar]
  66. Stein G. S., Lian J. B., Owen T. A. Relationship of cell growth to the regulation of tissue-specific gene expression during osteoblast differentiation. FASEB J. 1990 Oct;4(13):3111–3123. doi: 10.1096/fasebj.4.13.2210157. [DOI] [PubMed] [Google Scholar]
  67. Stepp M. A., Kindy M. S., Franzblau C., Sonenshein G. E. Complex regulation of collagen gene expression in cultured bovine aortic smooth muscle cells. J Biol Chem. 1986 May 15;261(14):6542–6547. [PubMed] [Google Scholar]
  68. Tajima T., Iijima K., Watanabe T. Collagen synthesis of cultured fibroblast from Werner's syndromes of premature aging. Experientia. 1978 Nov 15;34(11):1459–1460. doi: 10.1007/BF01932352. [DOI] [PubMed] [Google Scholar]
  69. Tanaka K., Nakazawa T., Okada Y., Kumahara Y. Roles of nuclear and cytoplasmic environments in the retarded DNA synthesis in Werner syndrome cells. Exp Cell Res. 1980 May;127(1):185–190. doi: 10.1016/0014-4827(80)90425-5. [DOI] [PubMed] [Google Scholar]
  70. Thweatt R., Goldstein S., Shmookler Reis R. J. A universal primer mixture for sequence determination at the 3' ends of cDNAs. Anal Biochem. 1990 Nov 1;190(2):314–316. doi: 10.1016/0003-2697(90)90200-s. [DOI] [PubMed] [Google Scholar]
  71. Ullu E., Tschudi C. Alu sequences are processed 7SL RNA genes. Nature. 1984 Nov 8;312(5990):171–172. doi: 10.1038/312171a0. [DOI] [PubMed] [Google Scholar]
  72. Walter P., Blobel G. Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum. Nature. 1982 Oct 21;299(5885):691–698. doi: 10.1038/299691a0. [DOI] [PubMed] [Google Scholar]
  73. Wu J., Grindlay G. J., Bushel P., Mendelsohn L., Allan M. Negative regulation of the human epsilon-globin gene by transcriptional interference: role of an Alu repetitive element. Mol Cell Biol. 1990 Mar;10(3):1209–1216. doi: 10.1128/mcb.10.3.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Zajchowski D. A., Band V., Trask D. K., Kling D., Connolly J. L., Sager R. Suppression of tumor-forming ability and related traits in MCF-7 human breast cancer cells by fusion with immortal mammary epithelial cells. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2314–2318. doi: 10.1073/pnas.87.6.2314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. de Wet W., Bernard M., Benson-Chanda V., Chu M. L., Dickson L., Weil D., Ramirez F. Organization of the human pro-alpha 2(I) collagen gene. J Biol Chem. 1987 Nov 25;262(33):16032–16036. [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES