Skip to main content
Cell Regulation logoLink to Cell Regulation
. 1990 Jan;1(2):189–195. doi: 10.1091/mbc.1.2.189

The in vitro biological effect of nerve growth factor is inhibited by synthetic peptides.

F M Longo 1, T K Vu 1, W C Mobley 1
PMCID: PMC361440  PMID: 2100197

Abstract

Nerve growth factor (NGF)1 is a neurotrophic polypeptide that acts via specific receptors to promote the survival and growth of neurons. To delineate the NGF domain(s) responsible for eliciting biological activity, we synthesized small peptides corresponding to three regions in NGF that are hydrophilic and highly conserved. Several peptides from mouse NGF region 26-40 inhibited the neurite-promoting effect of NGF on sensory neurons in vitro. Inhibition was sequence-specific and could be overcome by increasing the concentration of NGF. Moreover, peptide actions were specific for NGF-mediated events in that they failed to block the neurotrophic activity of ciliary neuronotrophic factor (CNTF) or phorbol 12-myristate 13-acetate (PMA). In spite of the inhibition of NGF activity, peptides did not affect the binding of radiolabeled NGF. These studies define one region of NGF that may be required for neurotrophic activity.

Full text

PDF
189

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baird A., Schubert D., Ling N., Guillemin R. Receptor- and heparin-binding domains of basic fibroblast growth factor. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2324–2328. doi: 10.1073/pnas.85.7.2324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boucaut J. C., Darribère T., Poole T. J., Aoyama H., Yamada K. M., Thiery J. P. Biologically active synthetic peptides as probes of embryonic development: a competitive peptide inhibitor of fibronectin function inhibits gastrulation in amphibian embryos and neural crest cell migration in avian embryos. J Cell Biol. 1984 Nov;99(5):1822–1830. doi: 10.1083/jcb.99.5.1822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cohen P., Sutter A., Landreth G., Zimmermann A., Shooter E. M. Oxidation of tryptophan-21 alters the biological activity and receptor binding characteristics of mouse nerve growth factor. J Biol Chem. 1980 Apr 10;255(7):2949–2954. [PubMed] [Google Scholar]
  4. Ebendal T., Larhammar D., Persson H. Structure and expression of the chicken beta nerve growth factor gene. EMBO J. 1986 Jul;5(7):1483–1487. doi: 10.1002/j.1460-2075.1986.tb04386.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fahnestock M., Bell R. A. Molecular cloning of a cDNA encoding the nerve growth factor precursor from Mastomys natalensis. Gene. 1988 Sep 30;69(2):257–264. doi: 10.1016/0378-1119(88)90436-2. [DOI] [PubMed] [Google Scholar]
  6. Frazier W. A., Hogue-Angeletti R. A., Sherman R., Bradshaw R. A. Topography of mouse 2.5S nerve growth factor. Reactivity of tyrosine and tryptophan. Biochemistry. 1973 Aug 14;12(17):3281–3293. doi: 10.1021/bi00741a021. [DOI] [PubMed] [Google Scholar]
  7. Gehlsen K. R., Argraves W. S., Pierschbacher M. D., Ruoslahti E. Inhibition of in vitro tumor cell invasion by Arg-Gly-Asp-containing synthetic peptides. J Cell Biol. 1988 Mar;106(3):925–930. doi: 10.1083/jcb.106.3.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hopp T. P., Woods K. R. Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3824–3828. doi: 10.1073/pnas.78.6.3824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. James R., Bradshaw R. A. Polypeptide growth factors. Annu Rev Biochem. 1984;53:259–292. doi: 10.1146/annurev.bi.53.070184.001355. [DOI] [PubMed] [Google Scholar]
  10. Knowles J. R. Tinkering with enzymes: what are we learning? Science. 1987 Jun 5;236(4806):1252–1258. doi: 10.1126/science.3296192. [DOI] [PubMed] [Google Scholar]
  11. Krstenansky J. L., Trivedi D., Hruby V. J. Importance of the 10-13 region of glucagon for its receptor interactions and activation of adenylate cyclase. Biochemistry. 1986 Jul 1;25(13):3833–3839. doi: 10.1021/bi00361a014. [DOI] [PubMed] [Google Scholar]
  12. Levi-Montalcini R. The nerve growth factor 35 years later. Science. 1987 Sep 4;237(4819):1154–1162. doi: 10.1126/science.3306916. [DOI] [PubMed] [Google Scholar]
  13. Longo F. M., Manthorpe M., Varon S. Spinal cord neuronotrophic factors (SCNTFs): I. Bioassay of schwannoma and other conditioned media. Brain Res. 1982 Feb;255(2):277–294. doi: 10.1016/0165-3806(82)90027-x. [DOI] [PubMed] [Google Scholar]
  14. Manthorpe M., Skaper S. D., Williams L. R., Varon S. Purification of adult rat sciatic nerve ciliary neuronotrophic factor. Brain Res. 1986 Mar 5;367(1-2):282–286. doi: 10.1016/0006-8993(86)91603-3. [DOI] [PubMed] [Google Scholar]
  15. Meier R., Becker-André M., Götz R., Heumann R., Shaw A., Thoenen H. Molecular cloning of bovine and chick nerve growth factor (NGF): delineation of conserved and unconserved domains and their relationship to the biological activity and antigenicity of NGF. EMBO J. 1986 Jul;5(7):1489–1493. doi: 10.1002/j.1460-2075.1986.tb04387.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Merrifield B. Solid phase synthesis. Science. 1986 Apr 18;232(4748):341–347. doi: 10.1126/science.3961484. [DOI] [PubMed] [Google Scholar]
  17. Misko T. P., Radeke M. J., Shooter E. M. Nerve growth factor in neuronal development and maintenance. J Exp Biol. 1987 Sep;132:177–190. doi: 10.1242/jeb.132.1.177. [DOI] [PubMed] [Google Scholar]
  18. Mobley W. C., Rutkowski J. L., Tennekoon G. I., Gemski J., Buchanan K., Johnston M. V. Nerve growth factor increases choline acetyltransferase activity in developing basal forebrain neurons. Brain Res. 1986 Jul;387(1):53–62. doi: 10.1016/0169-328x(86)90020-3. [DOI] [PubMed] [Google Scholar]
  19. Mobley W. C., Schenker A., Shooter E. M. Characterization and isolation of proteolytically modified nerve growth factor. Biochemistry. 1976 Dec 14;15(25):5543–5552. doi: 10.1021/bi00670a019. [DOI] [PubMed] [Google Scholar]
  20. Montz H. P., Davis G. E., Skaper S. D., Manthorpe M., Varon S. Tumor-promoting phorbol diester mimics two distinct neuronotrophic factors. Brain Res. 1985 Nov;355(1):150–154. doi: 10.1016/0165-3806(85)90015-x. [DOI] [PubMed] [Google Scholar]
  21. Pierschbacher M. D., Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature. 1984 May 3;309(5963):30–33. doi: 10.1038/309030a0. [DOI] [PubMed] [Google Scholar]
  22. Rosenberg M. B., Hawrot E., Breakefield X. O. Receptor binding activities of biotinylated derivatives of beta-nerve growth factor. J Neurochem. 1986 Feb;46(2):641–648. doi: 10.1111/j.1471-4159.1986.tb13015.x. [DOI] [PubMed] [Google Scholar]
  23. Selby M. J., Edwards R. H., Rutter W. J. Cobra nerve growth factor: structure and evolutionary comparison. J Neurosci Res. 1987;18(2):293–298. doi: 10.1002/jnr.490180205. [DOI] [PubMed] [Google Scholar]
  24. Skaper S. D., Varon S. Age-dependent control of dorsal root ganglion neuron survival by macromolecular and low-molecular-weight trophic agents and substratum-bound laminins. Brain Res. 1986 Jan;389(1-2):39–46. doi: 10.1016/0165-3806(86)90171-9. [DOI] [PubMed] [Google Scholar]
  25. Sutter A., Riopelle R. J., Harris-Warrick R. M., Shooter E. M. Nerve growth factor receptors. Characterization of two distinct classes of binding sites on chick embryo sensory ganglia cells. J Biol Chem. 1979 Jul 10;254(13):5972–5982. [PubMed] [Google Scholar]

Articles from Cell Regulation are provided here courtesy of American Society for Cell Biology

RESOURCES