Skip to main content
Cell Regulation logoLink to Cell Regulation
. 1990 Mar;1(4):337–346. doi: 10.1091/mbc.1.4.337

ATP-dependent and ATP-independent pathways of exocytosis revealed by interchanging glutamate and chloride as the major anion in permeabilized mast cells.

Y Churcher 1, B D Gomperts 1
PMCID: PMC361486  PMID: 1983110

Abstract

Most investigations of the mechanism of regulated exocytosis have involved the use of secretory cells permeabilized in glutamate-based electrolyte solutions. In our previous work we have used NaCl-based electrolyte solutions. For secretion to occur from rat mast cells under these latter conditions, a dual effector system comprising Ca2+ and a guanine nucleotide are required; together they are sufficient. Here we compare the secretion from mast cells permeabilized in solutions of different electrolytes. Replacement of Na+ by K+ had little effect. Replacement of Cl- by Br-, SO4-, gluconate, isethionate, acetate, tartrate, succinate, etc. affected the maximal extent of secretion elicited by the dual effectors Ca2+ and guanosine-5'-O-(3-thiotriphosphate) (Ca2(+)-plus-GTP-gamma-S) but had little influence on the effective affinity for Ca2+. The dicarboxylic amino acids (L- and D-glutamate, and L-aspartate) permitted exocytosis to be elicited by Ca2+ or GTP-gamma-S alone. Secretion stimulated by GTP-gamma-S is strongly inhibited by Cl- (50% inhibition by 20 mM Cl-), whereas the extent of Ca2(+)-induced secretion is proportional to the concentration of glutamate in mixed electrolyte buffers. Unlike dual-effector stimulation, secretion due to the single effectors requires adenosine triphosphate (ATP) and is prevented by inhibitors of protein kinase C. These results point to the existence of two parallel pathways for control of exocytosis in permeabilized cells, one ATP dependent, the other ATP independent.

Full text

PDF
337

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander D. R., Hexham J. M., Lucas S. C., Graves J. D., Cantrell D. A., Crumpton M. J. A protein kinase C pseudosubstrate peptide inhibits phosphorylation of the CD3 antigen in streptolysin-O-permeabilized human T lymphocytes. Biochem J. 1989 Jun 15;260(3):893–901. doi: 10.1042/bj2600893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baker P. F., Knight D. E. Calcium control of exocytosis and endocytosis in bovine adrenal medullary cells. Philos Trans R Soc Lond B Biol Sci. 1981 Dec 18;296(1080):83–103. doi: 10.1098/rstb.1981.0174. [DOI] [PubMed] [Google Scholar]
  3. Barrowman M. M., Cockcroft S., Gomperts B. D. Differential control of azurophilic and specific granule exocytosis in Sendai-virus-permeabilized rabbit neutrophils. J Physiol. 1987 Feb;383:115–124. doi: 10.1113/jphysiol.1987.sp016399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barrowman M. M., Cockcroft S., Gomperts B. D. Two roles for guanine nucleotides in the stimulus-secretion sequence of neutrophils. Nature. 1986 Feb 6;319(6053):504–507. doi: 10.1038/319504a0. [DOI] [PubMed] [Google Scholar]
  5. Bronner C., Mousli M., Eleno N., Landry Y. Resting plasma membrane potential of rat peritoneal mast cells is set predominantly by the sodium pump. FEBS Lett. 1989 Sep 25;255(2):401–404. doi: 10.1016/0014-5793(89)81132-9. [DOI] [PubMed] [Google Scholar]
  6. Cockcroft S., Howell T. W., Gomperts B. D. Two G-proteins act in series to control stimulus-secretion coupling in mast cells: use of neomycin to distinguish between G-proteins controlling polyphosphoinositide phosphodiesterase and exocytosis. J Cell Biol. 1987 Dec;105(6 Pt 1):2745–2750. doi: 10.1083/jcb.105.6.2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fernandez J. M., Neher E., Gomperts B. D. Capacitance measurements reveal stepwise fusion events in degranulating mast cells. 1984 Nov 29-Dec 5Nature. 312(5993):453–455. doi: 10.1038/312453a0. [DOI] [PubMed] [Google Scholar]
  8. Gomperts B. D., Baldwin J. M., Micklem K. J. Rat mast cells permeabilized with Sendai virus secrete histamine in response to Ca2+ buffered in the micromolar range. Biochem J. 1983 Mar 15;210(3):737–745. doi: 10.1042/bj2100737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gomperts B. D. GE: a GTP-binding protein mediating exocytosis. Annu Rev Physiol. 1990;52:591–606. doi: 10.1146/annurev.ph.52.030190.003111. [DOI] [PubMed] [Google Scholar]
  10. Gomperts B. D., Tatham P. E. GTP-binding proteins in the control of exocytosis. Cold Spring Harb Symp Quant Biol. 1988;53(Pt 2):983–992. doi: 10.1101/sqb.1988.053.01.113. [DOI] [PubMed] [Google Scholar]
  11. Higashijima T., Ferguson K. M., Sternweis P. C. Regulation of hormone-sensitive GTP-dependent regulatory proteins by chloride. J Biol Chem. 1987 Mar 15;262(8):3597–3602. [PubMed] [Google Scholar]
  12. House C., Kemp B. E. Protein kinase C contains a pseudosubstrate prototope in its regulatory domain. Science. 1987 Dec 18;238(4834):1726–1728. doi: 10.1126/science.3686012. [DOI] [PubMed] [Google Scholar]
  13. Howell T. W., Cockcroft S., Gomperts B. D. Essential synergy between Ca2+ and guanine nucleotides in exocytotic secretion from permeabilized rat mast cells. J Cell Biol. 1987 Jul;105(1):191–197. doi: 10.1083/jcb.105.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Howell T. W., Gomperts B. D. Rat mast cells permeabilised with streptolysin O secrete histamine in response to Ca2+ at concentrations buffered in the micromolar range. Biochim Biophys Acta. 1987 Feb 18;927(2):177–183. doi: 10.1016/0167-4889(87)90132-7. [DOI] [PubMed] [Google Scholar]
  15. Howell T. W., Kramer I. M., Gomperts B. D. Protein phosphorylation and the dependence on Ca2+ and GTP-gamma-S for exocytosis from permeabilised mast cells. Cell Signal. 1989;1(2):157–163. doi: 10.1016/0898-6568(89)90005-3. [DOI] [PubMed] [Google Scholar]
  16. Ince C., Thio B., van Duijn B., van Dissel J. T., Ypey D. L., Leijh P. C. Intracellular K+, Na+ and Cl- concentrations and membrane potential in human monocytes. Biochim Biophys Acta. 1987 Nov 27;905(1):195–204. doi: 10.1016/0005-2736(87)90023-x. [DOI] [PubMed] [Google Scholar]
  17. Ishizaka T. Role of GTP-binding protein in histamine release from mast cells. Clin Immunol Immunopathol. 1989 Jan;50(1 Pt 1):20–29. doi: 10.1016/0090-1229(89)90218-3. [DOI] [PubMed] [Google Scholar]
  18. Johnson R. A., Pilkis S. J., Hamet P. Liver membrane adenylate cyclase. Synergistic effects of anions on fluoride, glucagon, and guanyl nucleotide stimulation. J Biol Chem. 1975 Aug 25;250(16):6599–6607. [PubMed] [Google Scholar]
  19. Knight D. E., Baker P. F. Calcium-dependence of catecholamine release from bovine adrenal medullary cells after exposure to intense electric fields. J Membr Biol. 1982;68(2):107–140. doi: 10.1007/BF01872259. [DOI] [PubMed] [Google Scholar]
  20. Knight D. E., Scrutton M. C. Gaining access to the cytosol: the technique and some applications of electropermeabilization. Biochem J. 1986 Mar 15;234(3):497–506. doi: 10.1042/bj2340497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kramer I. M., van der Bend R. L., Tool A. T., van Blitterswijk W. J., Roos D., Verhoeven A. J. 1-O-hexadecyl-2-Q-methylglycerol, a novel inhibitor of protein kinase C, inhibits the respiratory burst in human neutrophils. J Biol Chem. 1989 Apr 5;264(10):5876–5884. [PubMed] [Google Scholar]
  22. Ludowyke R. I., Peleg I., Beaven M. A., Adelstein R. S. Antigen-induced secretion of histamine and the phosphorylation of myosin by protein kinase C in rat basophilic leukemia cells. J Biol Chem. 1989 Jul 25;264(21):12492–12501. [PubMed] [Google Scholar]
  23. Mason W. T., Rawlings S. R., Cobbett P., Sikdar S. K., Zorec R., Akerman S. N., Benham C. D., Berridge M. J., Cheek T., Moreton R. B. Control of secretion in anterior pituitary cells--linking ion channels, messengers and exocytosis. J Exp Biol. 1988 Sep;139:287–316. doi: 10.1242/jeb.139.1.287. [DOI] [PubMed] [Google Scholar]
  24. Neher E. The influence of intracellular calcium concentration on degranulation of dialysed mast cells from rat peritoneum. J Physiol. 1988 Jan;395:193–214. doi: 10.1113/jphysiol.1988.sp016914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Penner R., Neher E. Secretory responses of rat peritoneal mast cells to high intracellular calcium. FEBS Lett. 1988 Jan 4;226(2):307–313. doi: 10.1016/0014-5793(88)81445-5. [DOI] [PubMed] [Google Scholar]
  26. Penner R., Pusch M., Neher E. Washout phenomena in dialyzed mast cells allow discrimination of different steps in stimulus-secretion coupling. Biosci Rep. 1987 Apr;7(4):313–321. doi: 10.1007/BF01121453. [DOI] [PubMed] [Google Scholar]
  27. Ronning S. A., Martin T. F. Prolactin secretion in permeable GH3 pituitary cells is stimulated by Ca2+ and protein kinase C activators. Biochem Biophys Res Commun. 1985 Jul 31;130(2):524–532. doi: 10.1016/0006-291x(85)90448-6. [DOI] [PubMed] [Google Scholar]
  28. Saito H., Ishizaka K., Ishizaka T. Effect of nonhydrolyzable guanosine phosphate on IgE-mediated activation of phospholipase C and histamine release from rodent mast cells. J Immunol. 1989 Jul 1;143(1):250–258. [PubMed] [Google Scholar]
  29. Sasaki H. Modulation of calcium sensitivity by a specific cortical protein during sea urchin egg cortical vesicle exocytosis. Dev Biol. 1984 Jan;101(1):125–135. doi: 10.1016/0012-1606(84)90123-4. [DOI] [PubMed] [Google Scholar]
  30. Schwartz L. B., Austen K. F., Wasserman S. I. Immunologic release of beta-hexosaminidase and beta-glucuronidase from purified rat serosal mast cells. J Immunol. 1979 Oct;123(4):1445–1450. [PubMed] [Google Scholar]
  31. Smolen J. E., Stoehr S. J. Guanine nucleotides reduce the free calcium requirement for secretion of granule constituents from permeabilized human neutrophils. Biochim Biophys Acta. 1986 Nov 28;889(2):171–178. doi: 10.1016/0167-4889(86)90101-1. [DOI] [PubMed] [Google Scholar]
  32. Smolen J. E., Stoehr S. J. Micromolar concentrations of free calcium provoke secretion of lysozyme from human neutrophils permeabilized with saponin. J Immunol. 1985 Mar;134(3):1859–1865. [PubMed] [Google Scholar]
  33. Stutchfield J., Cockcroft S. Guanine nucleotides stimulate polyphosphoinositide phosphodiesterase and exocytotic secretion from HL60 cells permeabilized with streptolysin O. Biochem J. 1988 Mar 1;250(2):375–382. doi: 10.1042/bj2500375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Svoboda M., Christophe J. The monovalent anions chloride and azide as potent activators of NaF- and p(NH)ppG-stimulation of pancreatic adenylate cyclase. FEBS Lett. 1978 Feb 15;86(2):230–234. doi: 10.1016/0014-5793(78)80568-7. [DOI] [PubMed] [Google Scholar]
  35. Tatham P. E., Gomperts B. D. ATP inhibits onset of exocytosis in permeabilised mast cells. Biosci Rep. 1989 Feb;9(1):99–109. doi: 10.1007/BF01117516. [DOI] [PubMed] [Google Scholar]
  36. Yamamoto T., Furuki Y., Guild S., Kebabian J. W. Adenosine 3',5'-cyclic monophosphate stimulates secretion of alpha-melanocyte-stimulating hormone from permeabilized cells of the intermediate lobe of the rat pituitary gland. Biochem Biophys Res Commun. 1987 Mar 30;143(3):1076–1084. doi: 10.1016/0006-291x(87)90362-7. [DOI] [PubMed] [Google Scholar]
  37. van Blitterswijk W. J., van der Bend R. L., Kramer I. M., Verhoeven A. J., Hilkmann H., de Widt J. A metabolite of an antineoplastic ether phospholipid may inhibit transmembrane signalling via protein kinase C. Lipids. 1987 Nov;22(11):842–846. doi: 10.1007/BF02535541. [DOI] [PubMed] [Google Scholar]

Articles from Cell Regulation are provided here courtesy of American Society for Cell Biology

RESOURCES