Skip to main content
Cell Regulation logoLink to Cell Regulation
. 1990 Dec;1(13):1057–1067. doi: 10.1091/mbc.1.13.1057

Cell-free translation systems prepared from starfish oocytes faithfully reflect in vivo activity; mRNA and initiation factors stimulate supernatants from immature oocytes.

Z Xu 1, M B Hille 1
PMCID: PMC361702  PMID: 2134747

Abstract

Meiotic maturation stimulates a change in the translation of stored mRNAs: mRNAs encoding proteins needed for growth of oocytes are translated before meiotic maturation, whereas those encoding proteins required for cleavage are translated after meiotic maturation. Studies of translational regulation during meiotic maturation have been limited by the lack of translationally active cell-free supernatants. Starfish oocytes are ideal for preparing cell-free translation systems because experimental application of the hormone 1-methyladenine induces their maturation, synchronizing meiosis. We have prepared such systems from both immature and mature oocytes of starfish. Changes in protein synthesis rates and the specificity of proteins synthesized in these cell-free translation supernatants mimic those seen in vivo. Supernatants both from immature and mature oocytes have a high capacity to initiate new translation because 90% of the proteins made are newly initiated from mRNAs. Cell-free supernatants from mature oocytes have a much higher rate of initiation of translation than those from immature oocytes and use the 43S preinitiation complexes more efficiently in initiation of translation. Similarly, we have shown that mRNAs and initiation factors are rate limiting in cell-free translation systems prepared from immature oocytes. In addition, cell-free translation systems prepared from immature oocytes are only slightly, if at all, inhibitory to cell-free translation systems from mature oocytes. Thus, soluble inhibitors, if they exist, are rapidly converted by cell-free supernatants from mature oocytes. The similarities between translation in our starfish cell-free translation systems and in intact oocytes suggests that the cell-free translation systems will be useful tools for further studies of maturation events and translational control during meiosis.

Full text

PDF
1057

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Colin A. M., Brown B. D., Dholakia J. N., Woodley C. L., Wahba A. J., Hille M. B. Evidence for simultaneous derepression of messenger RNA and the guanine nucleotide exchange factor in fertilized sea urchin eggs. Dev Biol. 1987 Oct;123(2):354–363. doi: 10.1016/0012-1606(87)90394-0. [DOI] [PubMed] [Google Scholar]
  2. Crystal R. G., Elson N. A., Anderson W. F. Initiation of globin synthesis: assays. Methods Enzymol. 1974;30:101–127. doi: 10.1016/0076-6879(74)30014-6. [DOI] [PubMed] [Google Scholar]
  3. Doree M., Guerrier P. Site of action of 1-methyladenine in inducing oocyte maturation in starfish. Kinetic evidence for receptors localized on the cell membrane. Exp Cell Res. 1975 Mar 15;91(2):296–300. doi: 10.1016/0014-4827(75)90107-x. [DOI] [PubMed] [Google Scholar]
  4. Eisenstein R. S., Harper A. E. Characterization of a protein synthesis system from rat liver. Translation of endogenous and exogenous messenger RNA. J Biol Chem. 1984 Aug 10;259(15):9922–9928. [PubMed] [Google Scholar]
  5. Firtel R. A., Monroy A. Polysomes and RNA synthesis during early development of the surf clam Spisula solidissima. Dev Biol. 1970 Feb;21(1):87–104. doi: 10.1016/0012-1606(70)90063-1. [DOI] [PubMed] [Google Scholar]
  6. Gasior E., Herrera F., Sadnik I., McLaughlin C. S., Moldave K. The preparation and characterization of a cell-free system from Saccharomyces cerevisiae that translates natural messenger ribonucleic acid. J Biol Chem. 1979 May 25;254(10):3965–3969. [PubMed] [Google Scholar]
  7. Goustin A. S., Wilt F. H. Protein synthesis, polyribosomes, and peptide elongation in early development of Strongylocentrotus purpuratus. Dev Biol. 1981 Feb;82(1):32–40. doi: 10.1016/0012-1606(81)90426-7. [DOI] [PubMed] [Google Scholar]
  8. Grainger J. L., Winkler M. M. Fertilization triggers unmasking of maternal mRNAs in sea urchin eggs. Mol Cell Biol. 1987 Nov;7(11):3947–3954. doi: 10.1128/mcb.7.11.3947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grainger J. L., von Brunn A., Winkler M. M. Transient synthesis of a specific set of proteins during the rapid cleavage phase of sea urchin development. Dev Biol. 1986 Apr;114(2):403–415. doi: 10.1016/0012-1606(86)90205-8. [DOI] [PubMed] [Google Scholar]
  10. Hansen L. J., Huang W. I., Jagus R. Inhibitor of translational initiation in sea urchin eggs prevents mRNA utilization. J Biol Chem. 1987 May 5;262(13):6114–6120. [PubMed] [Google Scholar]
  11. Houk M. S., Epel D. Protein synthesis during hormonally induced meiotic maturation and fertilization in starfish oocytes. Dev Biol. 1974 Oct;40(2):298–310. doi: 10.1016/0012-1606(74)90132-8. [DOI] [PubMed] [Google Scholar]
  12. Huang W. I., Hansen L. J., Merrick W. C., Jagus R. Inhibitor of eukaryotic initiation factor 4F activity in unfertilized sea urchin eggs. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6359–6363. doi: 10.1073/pnas.84.18.6359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jackson R. J., Hunt T. Preparation and use of nuclease-treated rabbit reticulocyte lysates for the translation of eukaryotic messenger RNA. Methods Enzymol. 1983;96:50–74. doi: 10.1016/s0076-6879(83)96008-1. [DOI] [PubMed] [Google Scholar]
  14. Kishimoto T., Kondo H. Extraction and preliminary characterization of maturation-promoting factor from starfish oocytes. Exp Cell Res. 1986 Apr;163(2):445–452. doi: 10.1016/0014-4827(86)90075-3. [DOI] [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Lopo A. C., Lashbrook C. C., Hershey J. W. Characterization of translation systems in vitro from three developmental stages of Strongylocentrotus purpuratus. Biochem J. 1989 Mar 1;258(2):553–561. doi: 10.1042/bj2580553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lopo A. C., MacMillan S., Hershey J. W. Translational control in early sea urchin embryogenesis: initiation factor eIF4F stimulates protein synthesis in lysates from unfertilized eggs of Strongylocentrotus purpuratus. Biochemistry. 1988 Jan 12;27(1):351–357. doi: 10.1021/bi00401a053. [DOI] [PubMed] [Google Scholar]
  18. Mandley E. N., Lopo A. C. Putative nuclease-sensitive control element in unfertilized eggs of the sea urchin Lytechinus pictus. Biochem Biophys Res Commun. 1987 Jun 15;145(2):921–926. doi: 10.1016/0006-291x(87)91053-9. [DOI] [PubMed] [Google Scholar]
  19. Martindale M. Q., Brandhorst B. P. Translational changes induced by 1-methyladenine in anucleate starfish oocytes. Dev Biol. 1984 Feb;101(2):512–515. doi: 10.1016/0012-1606(84)90164-7. [DOI] [PubMed] [Google Scholar]
  20. McGrew L. L., Dworkin-Rastl E., Dworkin M. B., Richter J. D. Poly(A) elongation during Xenopus oocyte maturation is required for translational recruitment and is mediated by a short sequence element. Genes Dev. 1989 Jun;3(6):803–815. doi: 10.1101/gad.3.6.803. [DOI] [PubMed] [Google Scholar]
  21. Morley S. J., Jackson R. J. Preparation and properties of an improved cell-free protein synthesis system from mammalian liver. Biochim Biophys Acta. 1985 May 24;825(1):45–56. doi: 10.1016/0167-4781(85)90078-8. [DOI] [PubMed] [Google Scholar]
  22. Pain V. M., Lewis J. A., Huvos P., Henshaw E. C., Clemens M. J. The effects of amino acid starvation on regulation of polypeptide chain initiation in Ehrlich ascites tumor cells. J Biol Chem. 1980 Feb 25;255(4):1486–1491. [PubMed] [Google Scholar]
  23. Palmiter R. D. Magnesium precipitation of ribonucleoprotein complexes. Expedient techniques for the isolation of undergraded polysomes and messenger ribonucleic acid. Biochemistry. 1974 Aug 13;13(17):3606–3615. doi: 10.1021/bi00714a032. [DOI] [PubMed] [Google Scholar]
  24. Patrick T. D., Lewer C. E., Pain V. M. Preparation and characterization of cell-free protein synthesis systems from oocytes and eggs of Xenopus laevis. Development. 1989 May;106(1):1–9. doi: 10.1242/dev.106.1.1. [DOI] [PubMed] [Google Scholar]
  25. Pelham H. R., Jackson R. J. An efficient mRNA-dependent translation system from reticulocyte lysates. Eur J Biochem. 1976 Aug 1;67(1):247–256. doi: 10.1111/j.1432-1033.1976.tb10656.x. [DOI] [PubMed] [Google Scholar]
  26. Richter J. D., Smith L. D. Reversible inhibition of translation by Xenopus oocyte-specific proteins. Nature. 1984 May 24;309(5966):378–380. doi: 10.1038/309378a0. [DOI] [PubMed] [Google Scholar]
  27. Rosenthal E. T., Brandhorst B. P., Ruderman J. V. Translationally mediated changes in patterns of protein synthesis during maturation of starfish oocytes. Dev Biol. 1982 May;91(1):215–220. doi: 10.1016/0012-1606(82)90026-4. [DOI] [PubMed] [Google Scholar]
  28. Rosenthal E. T., Ruderman J. V. Widespread changes in the translation and adenylation of maternal messenger RNAs following fertilization of Spisula oocytes. Dev Biol. 1987 May;121(1):237–246. doi: 10.1016/0012-1606(87)90155-2. [DOI] [PubMed] [Google Scholar]
  29. Rosenthal E. T., Tansey T. R., Ruderman J. V. Sequence-specific adenylations and deadenylations accompany changes in the translation of maternal messenger RNA after fertilization of Spisula oocytes. J Mol Biol. 1983 May 25;166(3):309–327. doi: 10.1016/s0022-2836(83)80087-4. [DOI] [PubMed] [Google Scholar]
  30. Safer B., Jagus R., Kemper W. M. Analysis of initiation factor function in highly fractionated and unfractionated reticulocyte lysate systems. Methods Enzymol. 1979;60:61–87. doi: 10.1016/s0076-6879(79)60008-3. [DOI] [PubMed] [Google Scholar]
  31. Schreier M. H., Staehelin T. Initiation of mammalian protein synthesis: the importance of ribosome and initiation factor quality for the efficiency of in vitro systems. J Mol Biol. 1973 Feb 19;73(3):329–349. doi: 10.1016/0022-2836(73)90346-x. [DOI] [PubMed] [Google Scholar]
  32. Skup D., Millward S. Highly efficient translation of messenger RNA in cell-free extracts prepared from L-cells. Nucleic Acids Res. 1977 Oct;4(10):3581–3587. doi: 10.1093/nar/4.10.3581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Spirin A. S. "Masked" forms of mRNA. Curr Top Dev Biol. 1966;1:1–38. [PubMed] [Google Scholar]
  34. Winkler M. M., Nelson E. M., Lashbrook C., Hershey J. W. Multiple levels of regulation of protein synthesis at fertilization in sea urchin eggs. Dev Biol. 1985 Feb;107(2):290–300. doi: 10.1016/0012-1606(85)90312-4. [DOI] [PubMed] [Google Scholar]
  35. Yoshikuni M., Ishikawa K., Isobe M., Goto T., Nagahama Y. Characterization of 1-methyladenine binding in starfish oocyte cortices. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1874–1877. doi: 10.1073/pnas.85.6.1874. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cell Regulation are provided here courtesy of American Society for Cell Biology

RESOURCES