Abstract
The agonists carbachol (CCh) and bradykinin (BK) and 54 mM KCl (high K+) were among the most potent stimulants of cyclic AMP (cAMP) production in cultured rat sympathetic neurons, measured with the use of a high-fidelity assay developed for small samples. The rise in cAMP evoked by CCh (through muscarinic receptors), BK, and high K+ was inhibited in Ca2(+)-depleted medium (1.3 mM Ca2+ and 2 mM BAPTA or EGTA), which also prevented the sustained rise in [Ca2+]i evoked by each of these stimuli, showing that elevation of cAMP requires extracellular Ca2+ and, possibly, Ca2+ influx. Preliminary results obtained with the novel calmodulin inhibitor CGS 9343B, which blocked the elevation of cAMP, and with the cyclogenase inhibitor indomethacin, which partially blocked the actions of the agonists but not those of high K+, suggest that calmodulin and arachidonate metabolites may be two components of the signaling pathway. In addition to their effects on cAMP metabolism, CCh, muscarine, and BK, but not nicotine, caused a 30-40% decrease in ATP levels. This effect was much greater than that evoked by high K+ and was largely inhibited by CGS 9343B but slightly enhanced in the Ca(+)-depleted medium, showing that agonists are still active in the absence of [Ca2+]o. Thus, agonists that activate phosphoinositide metabolism can also increase cAMP production and substantially deplete cells of ATP. These novel actions may have to be taken into account when the mechanisms by which such agonists regulate cell function are being considered.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bareis D. L., Manganiello V. C., Hirata F., Vaughan M., Axelrod J. Bradykinin stimulates phospholipid methylation, calcium influx, prostaglandin formation, and cAMP accumulation in human fibroblasts. Proc Natl Acad Sci U S A. 1983 May;80(9):2514–2518. doi: 10.1073/pnas.80.9.2514. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bone E. A., Fretten P., Palmer S., Kirk C. J., Michell R. H. Rapid accumulation of inositol phosphates in isolated rat superior cervical sympathetic ganglia exposed to V1-vasopressin and muscarinic cholinergic stimuli. Biochem J. 1984 Aug 1;221(3):803–811. doi: 10.1042/bj2210803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bone E. A., Michell R. H. Accumulation of inositol phosphates in sympathetic ganglia. Effects of depolarization and of amine and peptide neurotransmitters. Biochem J. 1985 Apr 1;227(1):263–269. doi: 10.1042/bj2270263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonner T. I. The molecular basis of muscarinic receptor diversity. Trends Neurosci. 1989 Apr;12(4):148–151. doi: 10.1016/0166-2236(89)90054-4. [DOI] [PubMed] [Google Scholar]
- Brown D. A., Caulfield M. P., Kirby P. J. Relation between catecholamine-induced cyclic AMP changes and hyperpolarization in isolated rat sympathetic ganglia. J Physiol. 1979 May;290(2):441–451. doi: 10.1113/jphysiol.1979.sp012782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown D. A., Marrion N. V., Smart T. G. On the transduction mechanism for muscarine-induced inhibition of M-current in cultured rat sympathetic neurones. J Physiol. 1989 Jun;413:469–488. doi: 10.1113/jphysiol.1989.sp017664. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conklin B. R., Brann M. R., Buckley N. J., Ma A. L., Bonner T. I., Axelrod J. Stimulation of arachidonic acid release and inhibition of mitogenesis by cloned genes for muscarinic receptor subtypes stably expressed in A9 L cells. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8698–8702. doi: 10.1073/pnas.85.22.8698. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cramer H., Johnson D. G., Hanbauer I., Silberstein S. D., Kopin I. J. Accumulation of adenosine 3',5'-monophosphate induced by catecholamines in the rat superior cervical ganglion in vitro. Brain Res. 1973 Apr 13;53(1):97–104. doi: 10.1016/0006-8993(73)90769-5. [DOI] [PubMed] [Google Scholar]
- Fasolato C., Pandiella A., Meldolesi J., Pozzan T. Generation of inositol phosphates, cytosolic Ca2+, and ionic fluxes in PC12 cells treated with bradykinin. J Biol Chem. 1988 Nov 25;263(33):17350–17359. [PubMed] [Google Scholar]
- Gatti G., Madeddu L., Pandiella A., Pozzan T., Meldolesi J. Second-messenger generation in PC12 cells. Interactions between cyclic AMP and Ca2+ signals. Biochem J. 1988 Nov 1;255(3):753–760. doi: 10.1042/bj2550753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Hawrot E., Patterson P. H. Long-term culture of dissociated sympathetic neurons. Methods Enzymol. 1979;58:574–584. doi: 10.1016/s0076-6879(79)58174-9. [DOI] [PubMed] [Google Scholar]
- Heideman W., Wierman B. M., Storm D. R. GTP is not required for calmodulin stimulation of bovine brain adenylate cyclase. Proc Natl Acad Sci U S A. 1982 Mar;79(5):1462–1465. doi: 10.1073/pnas.79.5.1462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill T. D., Campos-Gonzalez R., Kindmark H., Boynton A. L. Inhibition of inositol trisphosphate-stimulated calcium mobilization by calmodulin antagonists in rat liver epithelial cells. J Biol Chem. 1988 Nov 5;263(31):16479–16484. [PubMed] [Google Scholar]
- Horwitz J., Tsymbalov S., Perlman R. L. Muscarine stimulates the hydrolysis of inositol-containing phospholipids in the superior cervical ganglion. J Pharmacol Exp Ther. 1985 Apr;233(1):235–241. [PubMed] [Google Scholar]
- Irvine R. F., Moor R. M. Micro-injection of inositol 1,3,4,5-tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+. Biochem J. 1986 Dec 15;240(3):917–920. doi: 10.1042/bj2400917. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jackson T. R., Hallam T. J., Downes C. P., Hanley M. R. Receptor coupled events in bradykinin action: rapid production of inositol phosphates and regulation of cytosolic free Ca2+ in a neural cell line. EMBO J. 1987 Jan;6(1):49–54. doi: 10.1002/j.1460-2075.1987.tb04717.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katada T., Gilman A. G., Watanabe Y., Bauer S., Jakobs K. H. Protein kinase C phosphorylates the inhibitory guanine-nucleotide-binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase. Eur J Biochem. 1985 Sep 2;151(2):431–437. doi: 10.1111/j.1432-1033.1985.tb09120.x. [DOI] [PubMed] [Google Scholar]
- Klee C. B., Newton D. L., Ni W. C., Haiech J. Regulation of the calcium signal by calmodulin. Ciba Found Symp. 1986;122:162–182. doi: 10.1002/9780470513347.ch10. [DOI] [PubMed] [Google Scholar]
- Kostyuk P. G. Calcium ionic channels in electrically excitable membrane. Neuroscience. 1980;5(6):945–959. doi: 10.1016/0306-4522(80)90178-5. [DOI] [PubMed] [Google Scholar]
- Levi-Montalcini R. The nerve growth factor 35 years later. Science. 1987 Sep 4;237(4819):1154–1162. doi: 10.1126/science.3306916. [DOI] [PubMed] [Google Scholar]
- Lindl T., Cramer H. Formation, accumulation and release of adenosine 3',5'-monophosphate induced by histamine in the superior cervical ganglion of the rat in vitro. Biochim Biophys Acta. 1974 Mar 20;343(1):182–191. doi: 10.1016/0304-4165(74)90250-5. [DOI] [PubMed] [Google Scholar]
- Matsumoto K., Pappano A. J. Sodium-dependent membrane current induced by carbachol in single guinea-pig ventricular myocytes. J Physiol. 1989 Aug;415:487–502. doi: 10.1113/jphysiol.1989.sp017733. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nahorski S. R. Inositol polyphosphates and neuronal calcium homeostasis. Trends Neurosci. 1988 Oct;11(10):444–448. doi: 10.1016/0166-2236(88)90196-8. [DOI] [PubMed] [Google Scholar]
- Norman J. A., Ansell J., Stone G. A., Wennogle L. P., Wasley J. W. CGS 9343B, a novel, potent, and selective inhibitor of calmodulin activity. Mol Pharmacol. 1987 May;31(5):535–540. [PubMed] [Google Scholar]
- O'Sullivan A. J., Cheek T. R., Moreton R. B., Berridge M. J., Burgoyne R. D. Localization and heterogeneity of agonist-induced changes in cytosolic calcium concentration in single bovine adrenal chromaffin cells from video imaging of fura-2. EMBO J. 1989 Feb;8(2):401–411. doi: 10.1002/j.1460-2075.1989.tb03391.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peralta E. G., Ashkenazi A., Winslow J. W., Ramachandran J., Capon D. J. Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature. 1988 Aug 4;334(6181):434–437. doi: 10.1038/334434a0. [DOI] [PubMed] [Google Scholar]
- Perney T. M., Miller R. J. Two different G-proteins mediate neuropeptide Y and bradykinin-stimulated phospholipid breakdown in cultured rat sensory neurons. J Biol Chem. 1989 May 5;264(13):7317–7327. [PubMed] [Google Scholar]
- Pull I., McIlwain H. Metabolism of ( 14 C)adenine and derivatives by cerebral tissues, superfused and electrically stimulated. Biochem J. 1972 Feb;126(4):965–973. doi: 10.1042/bj1260965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramachandran J., Peralta E. G., Ashkenazi A., Winslow J. W., Capon D. J. The structural and functional interrelationships of muscarinic acetylcholine receptor subtypes. Bioessays. 1989 Feb-Mar;10(2-3):54–57. doi: 10.1002/bies.950100205. [DOI] [PubMed] [Google Scholar]
- Rindlisbacher B., Sidler M. A., Galatioto L. E., Zahler P. Arachidonic acid liberated by diacylglycerol lipase is essential for the release mechanism in chromaffin cells from bovine adrenal medulla. J Neurochem. 1990 Apr;54(4):1247–1252. doi: 10.1111/j.1471-4159.1990.tb01955.x. [DOI] [PubMed] [Google Scholar]
- Rydel R. E., Greene L. A. cAMP analogs promote survival and neurite outgrowth in cultures of rat sympathetic and sensory neurons independently of nerve growth factor. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1257–1261. doi: 10.1073/pnas.85.4.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seamon K. B., Daly J. W. Forskolin: its biological and chemical properties. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1986;20:1–150. [PubMed] [Google Scholar]
- Shimizu H., Daly J. Formation of cyclic adenosine 3',5'-monophosphate from adenosine in brain slices. Biochim Biophys Acta. 1970 Nov 24;222(2):465–473. doi: 10.1016/0304-4165(70)90137-6. [DOI] [PubMed] [Google Scholar]
- Smigel M. D. Purification of the catalyst of adenylate cyclase. J Biol Chem. 1986 Feb 5;261(4):1976–1982. [PubMed] [Google Scholar]
- Thayer S. A., Perney T. M., Miller R. J. Regulation of calcium homeostasis in sensory neurons by bradykinin. J Neurosci. 1988 Nov;8(11):4089–4097. doi: 10.1523/JNEUROSCI.08-11-04089.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tolkovsky A. M. Newly synthesized catalytic and regulatory components of adenylate cyclase are expressed in neurites of cultured sympathetic neurons. J Neurosci. 1987 Jan;7(1):110–119. doi: 10.1523/JNEUROSCI.07-01-00110.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tolkovsky A. M., Suidan H. S. Adenosine 5'-triphosphate synthesis and metabolism localized in neurites of cultured sympathetic neurons. Neuroscience. 1987 Dec;23(3):1133–1142. doi: 10.1016/0306-4522(87)90187-4. [DOI] [PubMed] [Google Scholar]
- Tolkovsky A. M., Walker A. E., Murrell R. D., Suidan H. S. Ca2+ transients are not required as signals for long-term neurite outgrowth from cultured sympathetic neurons. J Cell Biol. 1990 Apr;110(4):1295–1306. doi: 10.1083/jcb.110.4.1295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vicentini L. M., Ambrosini A., Di Virgilio F., Meldolesi J., Pozzan T. Activation of muscarinic receptors in PC12 cells. Correlation between cytosolic Ca2+ rise and phosphoinositide hydrolysis. Biochem J. 1986 Mar 15;234(3):555–562. doi: 10.1042/bj2340555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Villarroel A., Marrion N. V., Lopez H., Adams P. R. Bradykinin inhibits a potassium M-like current in rat pheochromocytoma PC12 cells. FEBS Lett. 1989 Sep 11;255(1):42–46. doi: 10.1016/0014-5793(89)81057-9. [DOI] [PubMed] [Google Scholar]
- Volle R. L., Patterson B. A. Regulation of cyclic AMP accumulation in a rat sympathetic ganglion: effects of vasoactive intestinal polypeptide. J Neurochem. 1982 Oct;39(4):1195–1197. doi: 10.1111/j.1471-4159.1982.tb11516.x. [DOI] [PubMed] [Google Scholar]
- Walicke P. A., Patterson P. H. On the role of cyclic nucleotides in the transmitter choice made by cultured sympathetic neurons. J Neurosci. 1981 Apr;1(4):333–342. doi: 10.1523/JNEUROSCI.01-04-00333.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wanke E., Ferroni A., Malgaroli A., Ambrosini A., Pozzan T., Meldolesi J. Activation of a muscarinic receptor selectively inhibits a rapidly inactivated Ca2+ current in rat sympathetic neurons. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4313–4317. doi: 10.1073/pnas.84.12.4313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshimasa T., Sibley D. R., Bouvier M., Lefkowitz R. J., Caron M. G. Cross-talk between cellular signalling pathways suggested by phorbol-ester-induced adenylate cyclase phosphorylation. Nature. 1987 May 7;327(6117):67–70. doi: 10.1038/327067a0. [DOI] [PubMed] [Google Scholar]
