Skip to main content
Cell Regulation logoLink to Cell Regulation
. 1991 Apr;2(4):311–316. doi: 10.1091/mbc.2.4.311

Differential dependence of early and late increases in 1,2-diacylglycerol on the presence of catalytically active alpha-thrombin: evidence for regulation at the level of 1,2-diacylglycerol generation.

L A Rangan 1, T M Wright 1, D M Raben 1
PMCID: PMC361783  PMID: 2059659

Abstract

alpha-Thrombin stimulates a biphasic increase in cellular 1,2-diacylglycerol mass in quiescent IIC9 fibroblasts. This report describes the use of hirudin, a high-affinity inhibitor of alpha-thrombin that renders it catalytically inactive, to investigate the dependence of elevated 1,2-diacylglycerol levels on the presence of catalytically active alpha-thrombin. When cultures were incubated in the presence of alpha-thrombin, 1,2-diacylglycerol levels remained elevated for greater than or equal to 4 h. Inactivation of alpha-thrombin after 15 s did not alter the kinetics of 1,2-diacylglycerol formation occurring over the next 1 h. However, sustained (1-4 h) increases in this lipid were eliminated. Inactivation of alpha-thrombin after 1 h of stimulation resulted in 1) an immediate and reversible decline in 1,2-diacylglycerol levels, 2) elimination of the sustained phase of 1,2-diacylglycerol production, 3) inhibition of the alpha-thrombin-stimulated generation of choline metabolites, and 4) a blunted mitogenic response to alpha-thrombin. These data indicate that early (0-1 h) and late (1-4 h) increases in 1,2-diacylglycerol are differentially dependent on the presence of catalytically active alpha-thrombin. Furthermore, sustained increases in 1,2-diacylglycerol in response to alpha-thrombin are regulated at least in part at the level of generation (via phosphatidylcholine hydrolysis). Our results also support a role for sustained 1,2-diacylglycerol levels in the mitogenic response.

Full text

PDF
311

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMES B. N., DUBIN D. T. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem. 1960 Mar;235:769–775. [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. Berridge M. J. Cell signalling through phospholipid metabolism. J Cell Sci Suppl. 1986;4:137–153. doi: 10.1242/jcs.1986.supplement_4.9. [DOI] [PubMed] [Google Scholar]
  4. Bishop W. R., Bell R. M. Attenuation of sn-1,2-diacylglycerol second messengers. Metabolism of exogenous diacylglycerols by human platelets. J Biol Chem. 1986 Sep 25;261(27):12513–12519. [PubMed] [Google Scholar]
  5. Brenner-Gati L., Berg K. A., Gershengorn M. C. Thyroid-stimulating hormone and insulin-like growth factor-1 synergize to elevate 1,2-diacylglycerol in rat thyroid cells. Stimulation of DNA synthesis via interaction between lipid and adenylyl cyclase signal transduction systems. J Clin Invest. 1988 Sep;82(3):1144–1148. doi: 10.1172/JCI113672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fisher S. K., Agranoff B. W. Receptor activation and inositol lipid hydrolysis in neural tissues. J Neurochem. 1987 Apr;48(4):999–1017. doi: 10.1111/j.1471-4159.1987.tb05618.x. [DOI] [PubMed] [Google Scholar]
  7. Holmsen H., Dangelmaier C. A., Holmsen H. K. Thrombin-induced platelet responses differ in requirement for receptor occupancy. Evidence for tight coupling of occupancy and compartmentalized phosphatidic acid formation. J Biol Chem. 1981 Sep 25;256(18):9393–9396. [PubMed] [Google Scholar]
  8. Huang E. M., Detwiler T. C. Thrombin-induced phosphoinositide hydrolysis in platelets. Receptor occupancy and desensitization. Biochem J. 1987 Feb 15;242(1):11–18. doi: 10.1042/bj2420011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kanoh H., Yamada K., Sakane F. Diacylglycerol kinase: a key modulator of signal transduction? Trends Biochem Sci. 1990 Feb;15(2):47–50. doi: 10.1016/0968-0004(90)90172-8. [DOI] [PubMed] [Google Scholar]
  10. Lau A. F., Rayson T. C., Humphreys T. Tumor promoters and diacylglycerol activate the Na+/H+ antiporter of sea urchin eggs. Exp Cell Res. 1986 Sep;166(1):23–30. doi: 10.1016/0014-4827(86)90505-7. [DOI] [PubMed] [Google Scholar]
  11. Low D. A., Cunningham D. D. A novel method for measuring cell surface-bound thrombin. Detection of iodination-induced changes in thrombin-binding affinity. J Biol Chem. 1982 Jan 25;257(2):850–858. [PubMed] [Google Scholar]
  12. Low D. A., Scott R. W., Baker J. B., Cunningham D. D. Cells regulate their mitogenic response to thrombin through release of protease nexin. Nature. 1982 Jul 29;298(5873):476–478. doi: 10.1038/298476a0. [DOI] [PubMed] [Google Scholar]
  13. Maroney A. C., Macara I. G. Phorbol ester-induced translocation of diacylglycerol kinase from the cytosol to the membrane in Swiss 3T3 fibroblasts. J Biol Chem. 1989 Feb 15;264(5):2537–2544. [PubMed] [Google Scholar]
  14. Moolenaar W. H., Tertoolen L. G., de Laat S. W. Phorbol ester and diacylglycerol mimic growth factors in raising cytoplasmic pH. Nature. 1984 Nov 22;312(5992):371–374. doi: 10.1038/312371a0. [DOI] [PubMed] [Google Scholar]
  15. Pessin M. S., Raben D. M. Molecular species analysis of 1,2-diglycerides stimulated by alpha-thrombin in cultured fibroblasts. J Biol Chem. 1989 May 25;264(15):8729–8738. [PubMed] [Google Scholar]
  16. Preiss J., Loomis C. R., Bishop W. R., Stein R., Niedel J. E., Bell R. M. Quantitative measurement of sn-1,2-diacylglycerols present in platelets, hepatocytes, and ras- and sis-transformed normal rat kidney cells. J Biol Chem. 1986 Jul 5;261(19):8597–8600. [PubMed] [Google Scholar]
  17. Raben D. M., Yasuda K. M., Cunningham D. D. Relationship of thrombin-stimulated arachidonic acid release and metabolism to mitogenesis and phosphatidylinositol synthesis. J Cell Physiol. 1987 Mar;130(3):466–473. doi: 10.1002/jcp.1041300322. [DOI] [PubMed] [Google Scholar]
  18. Rosoff P. M., Savage N., Dinarello C. A. Interleukin-1 stimulates diacylglycerol production in T lymphocytes by a novel mechanism. Cell. 1988 Jul 1;54(1):73–81. doi: 10.1016/0092-8674(88)90181-x. [DOI] [PubMed] [Google Scholar]
  19. Sagawa N., Okazaki T., MacDonald P. C., Johnston J. M. Regulation of diacylglycerol metabolism and arachidonic acid release in human amnionic tissue. J Biol Chem. 1982 Jul 25;257(14):8158–8162. [PubMed] [Google Scholar]
  20. Stone S. R., Hofsteenge J. Kinetics of the inhibition of thrombin by hirudin. Biochemistry. 1986 Aug 12;25(16):4622–4628. doi: 10.1021/bi00364a025. [DOI] [PubMed] [Google Scholar]
  21. Söling H. D., Fest W., Schmidt T., Esselmann H., Bachmann V. Signal transmission in exocrine cells is associated with rapid activity changes of acyltransferases and diacylglycerol kinase due to reversible protein phosphorylation. J Biol Chem. 1989 Jun 25;264(18):10643–10648. [PubMed] [Google Scholar]
  22. Takuwa N., Takuwa Y., Yanagisawa M., Yamashita K., Masaki T. A novel vasoactive peptide endothelin stimulates mitogenesis through inositol lipid turnover in Swiss 3T3 fibroblasts. J Biol Chem. 1989 May 15;264(14):7856–7861. [PubMed] [Google Scholar]
  23. Van Obberghen-Schilling E., Pérez-Rodriguez R., Pouysségur J. Hirudin, a probe to analyze the growth-promoting activity of thrombin in fibroblasts; reevaluation of the temporal action of competence factors. Biochem Biophys Res Commun. 1982 May 14;106(1):79–86. doi: 10.1016/0006-291x(82)92060-5. [DOI] [PubMed] [Google Scholar]
  24. Wright T. M., Rangan L. A., Shin H. S., Raben D. M. Kinetic analysis of 1,2-diacylglycerol mass levels in cultured fibroblasts. Comparison of stimulation by alpha-thrombin and epidermal growth factor. J Biol Chem. 1988 Jul 5;263(19):9374–9380. [PubMed] [Google Scholar]
  25. Wright T. M., Shin H. S., Raben D. M. Sustained increase in 1,2-diacylglycerol precedes DNA synthesis in epidermal-growth-factor-stimulated fibroblasts. Evidence for stimulated phosphatidylcholine hydrolysis. Biochem J. 1990 Apr 15;267(2):501–507. doi: 10.1042/bj2670501. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cell Regulation are provided here courtesy of American Society for Cell Biology

RESOURCES