Abstract
The basement membrane stimulates the differentiation and polarity of simple transporting epithelia. We demonstrated for the retinal pigment epithelium (RPE) of chicken embryos that polarity develops gradually. Although the RPE and an immature basement membrane are established on embryonic day 4 (E4), the distribution of the Na,K-ATPase and a family of basement membrane receptors containing the beta 1 subunit of integrin is nonpolarized. The percentage of polarized cells increases gradually until cells in all regions of the epithelium are polarized on E11. During this time, the basement membrane increases in size and complexity to form Bruch's membrane. To study the ability of the basement membrane to stimulate the polarized distribution of the beta 1 integrins or the Na,K-ATPase, RPE was harvested from E7, E9, or E14 embryos and cultured on Bruch's membrane isolated (in association with the choroid) from E14 embryos. As a control, the RPE was plated on the side of the choroid lacking a Bruch's membrane. The distribution of the beta 1 integrins and the Na,K-ATPase was determined by indirect immunofluorescence. Bruch's membrane stimulated the polarized distribution of the beta 1 integrins regardless of the developmental age of the RPE even though E7 RPE is nonpolarized in vivo. To examine the role of individual matrix components, RPE was plated on matrix-coated filters. The polarized distribution of the beta 1 integrins was stimulated by laminin, collagen IV, and Matrigel but not by fibronectin. Interestingly, laminin and collagen IV are present in the basement membrane on E4 when RPE is not polarized in vivo. Under no circumstances was the distribution of the Na,K-ATPase polarized. These data indicate that the basement membrane influences the distribution of a subset of plasma membrane proteins but that other factors are required for full polarity.
Full text
PDF










Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albelda S. M., Buck C. A. Integrins and other cell adhesion molecules. FASEB J. 1990 Aug;4(11):2868–2880. [PubMed] [Google Scholar]
- Coulombre J. L., Coulombre A. J. Regeneration of neural retina from the pigmented epithelium in the chick embryo. Dev Biol. 1965 Aug;12(1):79–92. doi: 10.1016/0012-1606(65)90022-9. [DOI] [PubMed] [Google Scholar]
- FRANCOIS J., RABAEY M., LAGASSE A. ELECTRON MICROSCOPIC OBSERVATIONS ON CHOROID, PIGMENT EPITHELIUM AND PECTEN OF THE DEVELOPING CHICK IN RELATION TO MELANIN SYNTHESIS. Ophthalmologica. 1963;146:415–431. doi: 10.1159/000304553. [DOI] [PubMed] [Google Scholar]
- Fambrough D. M., Bayne E. K. Multiple forms of (Na+ + K+)-ATPase in the chicken. Selective detection of the major nerve, skeletal muscle, and kidney form by a monoclonal antibody. J Biol Chem. 1983 Mar 25;258(6):3926–3935. [PubMed] [Google Scholar]
- Gottlieb T. A., Gonzalez A., Rizzolo L., Rindler M. J., Adesnik M., Sabatini D. D. Sorting and endocytosis of viral glycoproteins in transfected polarized epithelial cells. J Cell Biol. 1986 Apr;102(4):1242–1255. doi: 10.1083/jcb.102.4.1242. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greve J. M., Gottlieb D. I. Monoclonal antibodies which alter the morphology of cultured chick myogenic cells. J Cell Biochem. 1982;18(2):221–229. doi: 10.1002/jcb.1982.240180209. [DOI] [PubMed] [Google Scholar]
- Gundersen D., Orlowski J., Rodriguez-Boulan E. Apical polarity of Na,K-ATPase in retinal pigment epithelium is linked to a reversal of the ankyrin-fodrin submembrane cytoskeleton. J Cell Biol. 1991 Mar;112(5):863–872. doi: 10.1083/jcb.112.5.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayashi M., Asayama K., Ueno S. Tissue culture of the retinal pigment epithelial cells. Acta Ophthalmol (Copenh) 1978 Feb;56(1):83–94. doi: 10.1111/j.1755-3768.1978.tb00470.x. [DOI] [PubMed] [Google Scholar]
- Horwitz A., Duggan K., Greggs R., Decker C., Buck C. The cell substrate attachment (CSAT) antigen has properties of a receptor for laminin and fibronectin. J Cell Biol. 1985 Dec;101(6):2134–2144. doi: 10.1083/jcb.101.6.2134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ingber D. E., Folkman J. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J Cell Biol. 1989 Jul;109(1):317–330. doi: 10.1083/jcb.109.1.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Itoh Y., Eguchi G. In vitro analysis of cellular metaplasia from pigmented epithelial cells to lens phenotypes: a unique model system for studying cellular and molecular mechanisms of "transdifferentiation". Dev Biol. 1986 Jun;115(2):353–362. doi: 10.1016/0012-1606(86)90255-1. [DOI] [PubMed] [Google Scholar]
- Klein G., Langegger M., Timpl R., Ekblom P. Role of laminin A chain in the development of epithelial cell polarity. Cell. 1988 Oct 21;55(2):331–341. doi: 10.1016/0092-8674(88)90056-6. [DOI] [PubMed] [Google Scholar]
- Kleinman H. K., McGarvey M. L., Hassell J. R., Star V. L., Cannon F. B., Laurie G. W., Martin G. R. Basement membrane complexes with biological activity. Biochemistry. 1986 Jan 28;25(2):312–318. doi: 10.1021/bi00350a005. [DOI] [PubMed] [Google Scholar]
- Korte G. E., Burns M. S., Bellhorn R. W. Epithelium-capillary interactions in the eye: the retinal pigment epithelium and the choriocapillaris. Int Rev Cytol. 1989;114:221–248. doi: 10.1016/s0074-7696(08)60862-1. [DOI] [PubMed] [Google Scholar]
- Kubota Y., Kleinman H. K., Martin G. R., Lawley T. J. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J Cell Biol. 1988 Oct;107(4):1589–1598. doi: 10.1083/jcb.107.4.1589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Machemer R., Laqua H. Pigment epithelium proliferation in retinal detachment (massive periretinal proliferation). Am J Ophthalmol. 1975 Jul;80(1):1–23. doi: 10.1016/0002-9394(75)90862-4. [DOI] [PubMed] [Google Scholar]
- McNeill H., Ozawa M., Kemler R., Nelson W. J. Novel function of the cell adhesion molecule uvomorulin as an inducer of cell surface polarity. Cell. 1990 Jul 27;62(2):309–316. doi: 10.1016/0092-8674(90)90368-o. [DOI] [PubMed] [Google Scholar]
- Mircheff A. K., Miller S. S., Farber D. B., Bradley M. E., O'Day W. T., Bok D. Isolation and provisional identification of plasma membrane populations from cultured human retinal pigment epithelium. Invest Ophthalmol Vis Sci. 1990 May;31(5):863–878. [PubMed] [Google Scholar]
- Nelson W. J., Hammerton R. W. A membrane-cytoskeletal complex containing Na+,K+-ATPase, ankyrin, and fodrin in Madin-Darby canine kidney (MDCK) cells: implications for the biogenesis of epithelial cell polarity. J Cell Biol. 1989 Mar;108(3):893–902. doi: 10.1083/jcb.108.3.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Opas M., Dziak E. Effects of substrata and method of tissue dissociation on adhesion, cytoskeleton, and growth of chick retinal pigmented epithelium in vitro. In Vitro Cell Dev Biol. 1988 Sep;24(9):885–892. doi: 10.1007/BF02623898. [DOI] [PubMed] [Google Scholar]
- Opas M. Expression of the differentiated phenotype by epithelial cells in vitro is regulated by both biochemistry and mechanics of the substratum. Dev Biol. 1989 Feb;131(2):281–293. doi: 10.1016/s0012-1606(89)80001-6. [DOI] [PubMed] [Google Scholar]
- Park C. M., Hollenberg M. J. Basic fibroblast growth factor induces retinal regeneration in vivo. Dev Biol. 1989 Jul;134(1):201–205. doi: 10.1016/0012-1606(89)90089-4. [DOI] [PubMed] [Google Scholar]
- Philp N. J., Nachmias V. T. Polarized distribution of integrin and fibronectin in retinal pigment epithelium. Invest Ophthalmol Vis Sci. 1987 Aug;28(8):1275–1280. [PubMed] [Google Scholar]
- Philp N. J., Yoon M. Y., Hock R. S. Identification and localization of talin in chick retinal pigment epithelial cells. Exp Eye Res. 1990 Aug;51(2):191–198. doi: 10.1016/0014-4835(90)90072-3. [DOI] [PubMed] [Google Scholar]
- Pollack A., Korte G. E. Repair of retinal pigment epithelium and its relationship with capillary endothelium after krypton laser photocoagulation. Invest Ophthalmol Vis Sci. 1990 May;31(5):890–898. [PubMed] [Google Scholar]
- Rizzolo L. J. The distribution of Na+,K(+)-ATPase in the retinal pigmented epithelium from chicken embryo is polarized in vivo but not in primary cell culture. Exp Eye Res. 1990 Oct;51(4):435–446. doi: 10.1016/0014-4835(90)90156-o. [DOI] [PubMed] [Google Scholar]
- Rodriguez Boulan E., Sabatini D. D. Asymmetric budding of viruses in epithelial monlayers: a model system for study of epithelial polarity. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5071–5075. doi: 10.1073/pnas.75.10.5071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodriguez-Boulan E., Nelson W. J. Morphogenesis of the polarized epithelial cell phenotype. Science. 1989 Aug 18;245(4919):718–725. doi: 10.1126/science.2672330. [DOI] [PubMed] [Google Scholar]
- Simons K., Fuller S. D. Cell surface polarity in epithelia. Annu Rev Cell Biol. 1985;1:243–288. doi: 10.1146/annurev.cb.01.110185.001331. [DOI] [PubMed] [Google Scholar]
- Sorokin L., Sonnenberg A., Aumailley M., Timpl R., Ekblom P. Recognition of the laminin E8 cell-binding site by an integrin possessing the alpha 6 subunit is essential for epithelial polarization in developing kidney tubules. J Cell Biol. 1990 Sep;111(3):1265–1273. doi: 10.1083/jcb.111.3.1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stoker A. W., Streuli C. H., Martins-Green M., Bissell M. J. Designer microenvironments for the analysis of cell and tissue function. Curr Opin Cell Biol. 1990 Oct;2(5):864–874. doi: 10.1016/0955-0674(90)90085-s. [DOI] [PubMed] [Google Scholar]
- Stroeva O. G., Mitashov V. I. Retinal pigment epithelium: proliferation and differentiation during development and regeneration. Int Rev Cytol. 1983;83:221–293. doi: 10.1016/s0074-7696(08)61689-7. [DOI] [PubMed] [Google Scholar]
- Tamkun M. M., Fambrough D. M. The (Na+ + K+)-ATPase of chick sensory neurons. Studies on biosynthesis and intracellular transport. J Biol Chem. 1986 Jan 25;261(3):1009–1019. [PubMed] [Google Scholar]
- Turksen K., Aubin J. E., Sodek J., Kalnins V. I. Changes in the distribution of laminin, fibronectin, type IV collagen and heparan sulfate proteoglycan during colony formation by chick retinal pigment epithelial cells in vitro. Coll Relat Res. 1984 Dec;4(6):413–426. doi: 10.1016/s0174-173x(84)80009-6. [DOI] [PubMed] [Google Scholar]
- Turksen K., Aubin J. E., Sodek J., Kalnins V. I. Localization of laminin, type IV collagen, fibronectin, and heparan sulfate proteoglycan in chick retinal pigment epithelium basement membrane during embryonic development. J Histochem Cytochem. 1985 Jul;33(7):665–671. doi: 10.1177/33.7.3159787. [DOI] [PubMed] [Google Scholar]
- Turksen K., Opas M., Aubin J. E., Kalnins V. I. Microtubules, microfilaments and adhesion patterns in differentiating chick retinal pigment epithelial (RPE) cells in vitro. Exp Cell Res. 1983 Sep;147(2):379–391. doi: 10.1016/0014-4827(83)90220-3. [DOI] [PubMed] [Google Scholar]






