Abstract
The product of the CIT2 gene has the tripeptide SKL at its carboxyl terminus. This amino acid sequence has been shown to act as a peroxisomal targeting signal in mammalian cells. We examined the subcellular site of this extramitochondrial citrate synthase. Cells of Saccharomyces cerevisiae were grown on oleate medium to induce peroxisome proliferation. A fraction containing membrane-enclosed vesicles and organelles was analyzed by sedimentation on density gradients. In wild-type cells, the major peak of citrate synthase activity was recovered in the mitochondrial fraction, but a second peak of activity cosedimented with peroxisomes. The peroxisomal activity, but not the mitochondrial activity, was inhibited by incubation at pH 8.1, a characteristic of the extramitochondrial citrate synthase encoded by the CIT2 gene. In a strain in which the CIT1 gene encoding mitochondrial citrate synthase had been disrupted, the major peak of citrate synthase activity was peroxisomal, and all of the activity was sensitive to incubation at pH 8.1. Yeast cells bearing a cit2 disruption were unable to mobilize stored lipids and did not form stable peroxisomes in oleate. We conclude that citrate synthase encoded by CIT2 is peroxisomal and participates in the glyoxylate cycle.
Full text
PDF![1399](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c824/362242/43d7a0c191be/molcellb00040-0109.png)
![1400](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c824/362242/61e48dd4825a/molcellb00040-0110.png)
![1401](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c824/362242/71fa08e8c913/molcellb00040-0111.png)
![1402](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c824/362242/1d14faf29f56/molcellb00040-0112.png)
![1403](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c824/362242/c721fec42c35/molcellb00040-0113.png)
![1404](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c824/362242/1d454b013fdd/molcellb00040-0114.png)
![1405](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c824/362242/62fc147a486a/molcellb00040-0115.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexson S. E., Fujiki Y., Shio H., Lazarow P. B. Partial disassembly of peroxisomes. J Cell Biol. 1985 Jul;101(1):294–304. doi: 10.1083/jcb.101.1.294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baudhuin P., Beaufay H., Rahman-Li Y., Sellinger O. Z., Wattiaux R., Jacques P., De Duve C. Tissue fractionation studies. 17. Intracellular distribution of monoamine oxidase, aspartate aminotransferase, alanine aminotransferase, D-amino acid oxidase and catalase in rat-liver tissue. Biochem J. 1964 Jul;92(1):179–184. doi: 10.1042/bj0920179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Cohen G., Rapatz W., Ruis H. Sequence of the Saccharomyces cerevisiae CTA1 gene and amino acid sequence of catalase A derived from it. Eur J Biochem. 1988 Sep 1;176(1):159–163. doi: 10.1111/j.1432-1033.1988.tb14263.x. [DOI] [PubMed] [Google Scholar]
- Distel B., Veenhuis M., Tabak H. F. Import of alcohol oxidase into peroxisomes of Saccharomyces cerevisiae. EMBO J. 1987 Oct;6(10):3111–3116. doi: 10.1002/j.1460-2075.1987.tb02620.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Douglas M., Finkelstein D., Butow R. A. Analysis of products of mitochondrial protein synthesis in yeast: genetic and biochemical aspects. Methods Enzymol. 1979;56:58–66. doi: 10.1016/0076-6879(79)56009-1. [DOI] [PubMed] [Google Scholar]
- Duntze W., Neumann D., Gancedo J. M., Atzpodien W., Holzer H. Studies on the regulation and localization of the glyoxylate cycle enzymes in Saccharomyces cerevisiae. Eur J Biochem. 1969 Aug;10(1):83–89. doi: 10.1111/j.1432-1033.1969.tb00658.x. [DOI] [PubMed] [Google Scholar]
- Gould S. J., Keller G. A., Hosken N., Wilkinson J., Subramani S. A conserved tripeptide sorts proteins to peroxisomes. J Cell Biol. 1989 May;108(5):1657–1664. doi: 10.1083/jcb.108.5.1657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gould S. J., Keller G. A., Subramani S. Identification of peroxisomal targeting signals located at the carboxy terminus of four peroxisomal proteins. J Cell Biol. 1988 Sep;107(3):897–905. doi: 10.1083/jcb.107.3.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoosein M. A., Lewin A. S. Derepression of citrate synthase in Saccharomyces cerevisiae may occur at the level of transcription. Mol Cell Biol. 1984 Feb;4(2):247–253. doi: 10.1128/mcb.4.2.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim K. S., Rosenkrantz M. S., Guarente L. Saccharomyces cerevisiae contains two functional citrate synthase genes. Mol Cell Biol. 1986 Jun;6(6):1936–1942. doi: 10.1128/mcb.6.6.1936. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kispal G., Rosenkrantz M., Guarente L., Srere P. A. Metabolic changes in Saccharomyces cerevisiae strains lacking citrate synthases. J Biol Chem. 1988 Aug 15;263(23):11145–11149. [PubMed] [Google Scholar]
- Lazarow P. B., Fujiki Y. Biogenesis of peroxisomes. Annu Rev Cell Biol. 1985;1:489–530. doi: 10.1146/annurev.cb.01.110185.002421. [DOI] [PubMed] [Google Scholar]
- Miyazawa S., Osumi T., Hashimoto T., Ohno K., Miura S., Fujiki Y. Peroxisome targeting signal of rat liver acyl-coenzyme A oxidase resides at the carboxy terminus. Mol Cell Biol. 1989 Jan;9(1):83–91. doi: 10.1128/mcb.9.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RACKER E. Spectrophotometric measurements of the enzymatic formation of fumaric and cis-aconitic acids. Biochim Biophys Acta. 1950 Jan;4(1-3):211–214. doi: 10.1016/0006-3002(50)90026-6. [DOI] [PubMed] [Google Scholar]
- Rickey T. M., Lewin A. S. Extramitochondrial citrate synthase activity in bakers' yeast. Mol Cell Biol. 1986 Feb;6(2):488–493. doi: 10.1128/mcb.6.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenkrantz M., Alam T., Kim K. S., Clark B. J., Srere P. A., Guarente L. P. Mitochondrial and nonmitochondrial citrate synthases in Saccharomyces cerevisiae are encoded by distinct homologous genes. Mol Cell Biol. 1986 Dec;6(12):4509–4515. doi: 10.1128/mcb.6.12.4509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Small G. M., Burdett K., Connock M. J. A sensitive spectrophotometric assay for peroxisomal acyl-CoA oxidase. Biochem J. 1985 Apr 1;227(1):205–210. doi: 10.1042/bj2270205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Small G. M., Imanaka T., Shio H., Lazarow P. B. Efficient association of in vitro translation products with purified stable Candida tropicalis peroxisomes. Mol Cell Biol. 1987 May;7(5):1848–1855. doi: 10.1128/mcb.7.5.1848. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Small G. M., Szabo L. J., Lazarow P. B. Acyl-CoA oxidase contains two targeting sequences each of which can mediate protein import into peroxisomes. EMBO J. 1988 Apr;7(4):1167–1173. doi: 10.1002/j.1460-2075.1988.tb02927.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suissa M., Suda K., Schatz G. Isolation of the nuclear yeast genes for citrate synthase and fifteen other mitochondrial proteins by a new screening method. EMBO J. 1984 Aug;3(8):1773–1781. doi: 10.1002/j.1460-2075.1984.tb02045.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Veenhuis M., Mateblowski M., Kunau W. H., Harder W. Proliferation of microbodies in Saccharomyces cerevisiae. Yeast. 1987 Jun;3(2):77–84. doi: 10.1002/yea.320030204. [DOI] [PubMed] [Google Scholar]