Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1990 Apr;10(4):1764–1768. doi: 10.1128/mcb.10.4.1764

trans-spliced Caenorhabditis elegans mRNAs retain trimethylguanosine caps.

R F Liou 1, T Blumenthal 1
PMCID: PMC362282  PMID: 2157142

Abstract

The nematode Caenorhabditis elegans has an unusual small nuclear RNA, containing a 100-nucleotide RNA molecule, spliced leader RNA, which donates its 5' 22 nucleotides to a variety of recipient RNAs by a trans-splicing reaction. The spliced leader RNA has a 5' trimethylguanosine (TMG) cap, which becomes the 5' end of trans-spliced mRNAs. We found that mature trans-spliced mRNAs were immunoprecipitable with anti-TMG cap antibodies and that TMG-containing dinucleotides specifically competed with the trans-spliced mRNAs for antibody binding. We also found that these mRNAs retained their TMG caps throughout development and that the TMG-capped mRNAs were polysome associated. Since the large majority of C. elegans mRNAs are not trans-spliced, the addition of the spliced leader and its TMG cap to a limited group of recipient RNAs may create a functionally distinct subset of mRNAs.

Full text

PDF
1764

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bektesh S., Van Doren K., Hirsh D. Presence of the Caenorhabditis elegans spliced leader on different mRNAs and in different genera of nematodes. Genes Dev. 1988 Oct;2(10):1277–1283. doi: 10.1101/gad.2.10.1277. [DOI] [PubMed] [Google Scholar]
  2. Blumenthal T., Thomas J. Cis and trans mRNA splicing in C. elegans. Trends Genet. 1988 Nov;4(11):305–308. doi: 10.1016/0168-9525(88)90107-2. [DOI] [PubMed] [Google Scholar]
  3. Bruzik J. P., Van Doren K., Hirsh D., Steitz J. A. Trans splicing involves a novel form of small nuclear ribonucleoprotein particles. Nature. 1988 Oct 6;335(6190):559–562. doi: 10.1038/335559a0. [DOI] [PubMed] [Google Scholar]
  4. Darzynkiewicz E., Stepinski J., Ekiel I., Jin Y., Haber D., Sijuwade T., Tahara S. M. Beta-globin mRNAs capped with m7G, m2.7(2)G or m2.2.7(3)G differ in intrinsic translation efficiency. Nucleic Acids Res. 1988 Sep 26;16(18):8953–8962. doi: 10.1093/nar/16.18.8953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Donis-Keller H. Site specific enzymatic cleavage of RNA. Nucleic Acids Res. 1979 Sep 11;7(1):179–192. doi: 10.1093/nar/7.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Freistadt M. S., Cross G. A., Branch A. D., Robertson H. D. Direct analysis of the mini-exon donor RNA of Trypanosoma brucei: detection of a novel cap structure also present in messenger RNA. Nucleic Acids Res. 1987 Dec 10;15(23):9861–9879. doi: 10.1093/nar/15.23.9861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HsuChen C. C., Dubin D. T. Di-and trimethylated congeners of 7-methylguanine in Sindbis virus mRNA. Nature. 1976 Nov 11;264(5582):190–191. doi: 10.1038/264190a0. [DOI] [PubMed] [Google Scholar]
  8. Huang X. Y., Barrios L. A., Vonkhorporn P., Honda S., Albertson D. G., Hecht R. M. Genomic organization of the glyceraldehyde-3-phosphate dehydrogenase gene family of Caenorhabditis elegans. J Mol Biol. 1989 Apr 5;206(3):411–424. doi: 10.1016/0022-2836(89)90490-7. [DOI] [PubMed] [Google Scholar]
  9. Krause M., Hirsh D. A trans-spliced leader sequence on actin mRNA in C. elegans. Cell. 1987 Jun 19;49(6):753–761. doi: 10.1016/0092-8674(87)90613-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Krause M., Wild M., Rosenzweig B., Hirsh D. Wild-type and mutant actin genes in Caenorhabditis elegans. J Mol Biol. 1989 Aug 5;208(3):381–392. doi: 10.1016/0022-2836(89)90503-2. [DOI] [PubMed] [Google Scholar]
  11. MacLeod A. R., Karn J., Brenner S. Molecular analysis of the unc-54 myosin heavy-chain gene of Caenorhabditis elegans. Nature. 1981 Jun 4;291(5814):386–390. doi: 10.1038/291386a0. [DOI] [PubMed] [Google Scholar]
  12. Perry K. L., Watkins K. P., Agabian N. Trypanosome mRNAs have unusual "cap 4" structures acquired by addition of a spliced leader. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8190–8194. doi: 10.1073/pnas.84.23.8190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rhoads R. E. Cap recognition and the entry of mRNA into the protein synthesis initiation cycle. Trends Biochem Sci. 1988 Feb;13(2):52–56. doi: 10.1016/0968-0004(88)90028-x. [DOI] [PubMed] [Google Scholar]
  14. Sulston J. E., Brenner S. The DNA of Caenorhabditis elegans. Genetics. 1974 May;77(1):95–104. doi: 10.1093/genetics/77.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sutton R. E., Boothroyd J. C. The cap of both miniexon-derived RNA and mRNA of trypanosomes is 7-methylguanosine. Mol Cell Biol. 1988 Jan;8(1):494–496. doi: 10.1128/mcb.8.1.494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Thomas J. D., Conrad R. C., Blumenthal T. The C. elegans trans-spliced leader RNA is bound to Sm and has a trimethylguanosine cap. Cell. 1988 Aug 12;54(4):533–539. doi: 10.1016/0092-8674(88)90075-x. [DOI] [PubMed] [Google Scholar]
  17. Van Doren K., Hirsh D. Trans-spliced leader RNA exists as small nuclear ribonucleoprotein particles in Caenorhabditis elegans. Nature. 1988 Oct 6;335(6190):556–559. doi: 10.1038/335556a0. [DOI] [PubMed] [Google Scholar]
  18. Van Doren K., Hirsh D. mRNAs that mature through trans-splicing in Caenorhabditis elegans have a trimethylguanosine cap at their 5' termini. Mol Cell Biol. 1990 Apr;10(4):1769–1772. doi: 10.1128/mcb.10.4.1769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. van Duijn L. P., Kasperaitis M., Ameling C., Voorma H. O. Additional methylation at the N(2)-position of the cap of 26S Semliki Forest virus late mRNA and initiation of translation. Virus Res. 1986 Jul;5(1):61–66. doi: 10.1016/0168-1702(86)90065-1. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES