Skip to main content
Genome Announcements logoLink to Genome Announcements
. 2013 Mar 21;1(2):e00100-13. doi: 10.1128/genomeA.00100-13

Complete Genome Sequence of Myxococcus stipitatus Strain DSM 14675, a Fruiting Myxobacterium

Stuart Huntley 1, Susanne Kneip 1, Anke Treuner-Lange 1, Lotte Søgaard-Andersen 1,
PMCID: PMC3622980  PMID: 23516218

Abstract

Hallmarks of the myxobacteria include the formation of spore-filled fruiting bodies in response to starvation and synthesis of secondary metabolites. Myxococcus stipitatus forms morphologically highly distinct fruiting bodies and produces secondary metabolites with antibiotic or cytotoxic activities. Here, we present the 10.35-Mb genome sequence of M. stipitatus strain DSM 14675.

GENOME ANNOUNCEMENT

Most myxobacteria initiate a complex developmental program in response to nutrient starvation (1). The end result of this program is the formation of fruiting bodies that are filled with environmentally resistant myxospores. Fruiting body morphology is genetically determined and varies widely among myxobacterial species, from simple spore-filled masses to complex tree-like structures (1, 2). Among myxobacteria, Myxococcus xanthus, which belongs to the suborder Cystobacterineae, has emerged as a model organism to understand fruiting body formation (3). Within the genus Myxococcus, most members generate simple haystack-shaped fruiting bodies. However, M. stipitatus generates a more complex fruiting body structure in which a mass of myxospores is placed on top of a cell-free stalk (2). Myxobacteria are also rich sources of secondary metabolites, several of which have antibiotic or cytotoxic activities (4, 5). Among secondary metabolites produced by M. stipitatus, melithiazols have been shown to have antibiotic activity (6) and rhizopodin has been shown to have cytotoxic activity (7). However, the gene clusters encoding the enzymes involved in their biosynthesis have not been identified.

As a part of our ongoing efforts to understand the evolution of the genetic programs for fruiting body formation as well as the genetic basis for differences in fruiting body morphology within the myxobacteria, we sequenced and annotated the entire genome of the proposed neotype strain M. stipitatus DSM 14675 (8), which was obtained from the Deutsche Sammlung von Mikroorganismen and Zellkulturen GmbH (DSMZ). After verifying fruiting body formation, we collected genomic DNA and sequenced it using the 454 XLR Titanium platform on an 8-kb paired-end library and Illumina genome analyzer IIx 100-bp reads. A combined total of 8,941,970 filtered reads (466,513 Titanium and 8,475,457 Illumina reads; 102-fold coverage) were assembled into a single scaffold using Newbler (9) and Celera (10) assembler results. Sanger-based sequencing was performed to close remaining gaps and to verify the assembly. Genome annotation was prepared by manual curation of the combined predictions of RAST (11) and PRODIGAL (12) algorithms.

The complete sequence of the M. stipitatus DSM 14675 single chromosome genome contains 10,350,586 bp, with a G+C content of 69.2%. Seventy-six tRNA genes and three rRNA operons were identified, along with 8,043 protein-coding genes, which average 1,175 bp in length. Predicted genes total 91.5% of the entire genome sequence. The size and genetic content of the M. stipitatus genome are similar to those of the other completely sequenced genomes of fruiting myxobacteria, i.e., Sorangium cellulosum of the suborder Sorangineae (13) and Haliangium ochraceum of the suborder Nannocystineae (14), as well as M. xanthus (15), M. fulvus (16), Stigmatella aurantiaca (17), and Corallococcus coralloides (18) of the suborder Cystobacterineae, with genome sizes of 13.0 Mb, 9.4 Mb, 9.1 Mb, 9.0 Mb, 10.3 Mb, and 10.0 Mb, respectively. When visualized using the Gepard dotplot generator (19), the overall synteny of the M. stipitatus genome most closely matches that of M. xanthus and shows a single large inversion compared to that of M. fulvus.

Nucleotide sequence accession number.

The genome sequence was deposited in GenBank under accession number CP004025.

ACKNOWLEDGMENT

The Max Planck Society supported this work.

Footnotes

Citation Huntley S, Kneip S, Treuner-Lange A, Søgaard-Andersen L. 2013. Complete genome sequence of Myxococcus stipitatus strain DSM 14675, a fruiting myxobacterium. Genome Announc. 1(2):e00100-13. doi:10.1128/genomeA.00100-13.

REFERENCES

  • 1. Reichenbach H. 1999. The ecology of the myxobacteria. Environ. Microbiol. 1:15–21 [DOI] [PubMed] [Google Scholar]
  • 2. Dawid W. 2000. Biology and global distribution of myxobacteria in soils. FEMS Microbiol. Rev. 24:403–427 [DOI] [PubMed] [Google Scholar]
  • 3. Konovalova A, Petters T, Søgaard-Andersen L. 2010. Extracellular biology of Myxococcus xanthus. FEMS Microbiol. Rev. 34:89–106 [DOI] [PubMed] [Google Scholar]
  • 4. Wenzel SC, Müller R. 2009. Myxobacteria—“microbial factories” for the production of bioactive secondary metabolites. Mol. Biosyst. 5:567–574 [DOI] [PubMed] [Google Scholar]
  • 5. Wenzel SC, Müller R. 2009. The impact of genomics on the exploitation of the myxobacterial secondary metabolome. Nat. Prod. Rep. 26:1385–1407 [DOI] [PubMed] [Google Scholar]
  • 6. Sasse F, Böhlendorf B, Herrmann M, Kunze B, Forche E, Steinmetz H, Höfle G, Reichenbach H, Hermann M. 1999. Melithiazols, new β-methoxyacrylate inhibitors of the respiratory chain isolated from myxobacteria. Production, isolation, physico-chemical and biological properties. J. Antibiot. Tokyo 52:721–729 [DOI] [PubMed] [Google Scholar]
  • 7. Sasse F, Steinmetz H, Höfle G, Reichenbach H. 1993. Rhizopodin, a new compound from Myxococcus stipitatus (myxobacteria) causes formation of rhizopodia-like structures in animal cell cultures. Production, isolation, physico-chemical and biological properties. J. Antibiot. Tokyo 46:741–748 [DOI] [PubMed] [Google Scholar]
  • 8. Lang E, Stackebrandt E. 2009. Emended descriptions of the genera Myxococcus and Corallococcus, typification of the species Myxococcus stipitatus and Myxococcus macrosporus and a proposal that they be represented by neotype strains. Request for an opinion. Int. J. Syst. Evol. Microbiol. 59:2122–2128 [DOI] [PubMed] [Google Scholar]
  • 9. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Miller JR, Delcher AL, Koren S, Venter E, Walenz BP, Brownley A, Johnson J, Li K, Mobarry C, Sutton G. 2008. Aggressive assembly of pyrosequencing reads with mates. Bioinformatics 24:2818–2824 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O. 2008. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Schneiker S, Perlova O, Kaiser O, Gerth K, Alici A, Altmeyer MO, Bartels D, Bekel T, Beyer S, Bode E, Bode HB, Bolten CJ, Choudhuri JV, Doss S, Elnakady YA, Frank B, Gaigalat L, Goesmann A, Groeger C, Gross F, Jelsbak L, Jelsbak L, Kalinowski J, Kegler C, Knauber T, Konietzny S, Kopp M, Krause L, Krug D, Linke B, Mahmud T, Martinez-Arias R, McHardy AC, Merai M, Meyer F, Mormann S, Muñoz-Dorado J, Perez J, Pradella S, Rachid S, Raddatz G, Rosenau F, Ruckert C, Sasse F, Scharfe M, Schuster SC, Suen G, Treuner-Lange A, Velicer GJ, Vorholter F-J, Weissman KJ, Welch RD, Wenzel SC, Whitworth DE, Wilhelm S, Wittmann C, Blocker H, Pühler A, Müller R. 2007. Complete genome sequence of the myxobacterium Sorangium cellulosum. Nat. Biotechnol. 25:1281–1289 [DOI] [PubMed] [Google Scholar]
  • 14. Ivanova I, Daum C, Lang E, Abt B, Kopitz M, Saunders E, Lapidus A, Lucas S, Glavina Del Rio T, Nolan M, Tice H, Copeland A, Cheng JF, Chen F, Bruce D, Goodwin L, Pitluck S, Mavromatis K, Pati A, Mikhailova N, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Detter JC, Brettin T, Rohde M, Göker M, Bristow J, Markowitz V, Eisen JA, Hugenholtz P, Kyrpides NC, Klenk HP. 2010. Complete genome sequence of Haliangium ochraceum type strain (SMP-2T). Stand. Genomics Sci. 2:96–106 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Goldman BS, Nierman WC, Kaiser D, Slater SC, Durkin AS, Eisen JA, Ronning CM, Barbazuk WB, Blanchard M, Field C, Halling C, Hinkle G, Iartchuk O, Kim HS, Mackenzie C, Madupu R, Miller N, Shvartsbeyn A, Sullivan SA, Vaudin M, Wiegand R, Kaplan HB. 2006. Evolution of sensory complexity recorded in a myxobacterial genome. Proc. Natl. Acad. Sci. U. S. A. 103:15200–15205 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Li Z-F, Li X, Liu H, Liu X, Han K, Wu Z-H, Hu W, Li F-f, Li Y-Z. 2011. Genome sequence of the halotolerant marine bacterium Myxococcus fulvus HW-1. J. Bacteriol. 193:5015–5016 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Huntley S, Hamann N, Wegener-Feldbrügge S, Treuner-Lange A, Kube M, Reinhardt R, Klages S, Müller R, Ronning CM, Nierman WC, Søgaard-Andersen L. 2011. Comparative genomic analysis of fruiting body formation in Myxococcales. Mol. Biol. Evol. 28:1083–1097 [DOI] [PubMed] [Google Scholar]
  • 18. Huntley S, Zhang Y, Treuner-Lange A, Kneip S, Sensen CW, Søgaard-Andersen L. 2012. Complete genome sequence of the fruiting myxobacterium Corallococcus coralloides DSM 2259. J. Bacteriol. 194:3012–3013 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Krumsiek J, Arnold R, Rattei T. 2007. Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 23:1026–1028 [DOI] [PubMed] [Google Scholar]

Articles from Genome Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES