Abstract
A synthetic DNA probe designed to detect coding sequences for platelet factor 4 and connective tissue-activating peptide III (two human platelet alpha-granule proteins) was used to identify several similar sequences in total human DNA. Sequence analysis of a corresponding 3,201-base-pair EcoRI fragment isolated from a human genomic library demonstrated the existence of a variant of platelet factor 4, designated PF4var1. The gene for PF4var1 consisted of three exons and two introns. Exon 1 coded for a 34-amino-acid hydrophobic leader sequence that had 70% sequence homology with the leader sequence for PF4 but, in contrast, contained a hydrophilic amino-terminal region with four arginine residues. Exon 2 coded for a 42-amino-acid segment that was 100% identical with the corresponding segment of the mature PF4 sequence containing the amino-terminal and disulfide-bonded core regions. Exon 3 coded for the 28-residue carboxy-terminal region corresponding to a domain specifying heparin-binding and cellular chemotaxis. However, PF4var1 had amino acid differences at three positions in the lysine-rich carboxy-terminal end that were all conserved among human, bovine, and rat PF4s. These differences should significantly affect the secondary structure and heparin-binding properties of the protein based on considerations of the bovine PF4 crystal structure. By comparing the PF4var1 genomic sequence with the known human cDNA and the rat genomic PF4-coding sequences, we identified potential genetic regulatory regions for PF4var1. Rat PF4 and human PF4var1 genes had identical 18-base sequences 5' to the promoter region. The intron positions appeared to correspond approximately to the boundaries of the protein functional domains.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amasino R. M. Acceleration of nucleic acid hybridization rate by polyethylene glycol. Anal Biochem. 1986 Feb 1;152(2):304–307. doi: 10.1016/0003-2697(86)90413-6. [DOI] [PubMed] [Google Scholar]
- Anisowicz A., Bardwell L., Sager R. Constitutive overexpression of a growth-regulated gene in transformed Chinese hamster and human cells. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7188–7192. doi: 10.1073/pnas.84.20.7188. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Birnstiel M. L., Busslinger M., Strub K. Transcription termination and 3' processing: the end is in site! Cell. 1985 Jun;41(2):349–359. doi: 10.1016/s0092-8674(85)80007-6. [DOI] [PubMed] [Google Scholar]
- Castor C. W., Furlong A. M., Carter-Su C. Connective tissue activation: stimulation of glucose transport by connective tissue activating peptide III. Biochemistry. 1985 Mar 26;24(7):1762–1767. doi: 10.1021/bi00328a029. [DOI] [PubMed] [Google Scholar]
- Castor C. W., Miller J. W., Walz D. A. Structural and biological characteristics of connective tissue activating peptide (CTAP-III), a major human platelet-derived growth factor. Proc Natl Acad Sci U S A. 1983 Feb;80(3):765–769. doi: 10.1073/pnas.80.3.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ciaglowski R. E., Snow J. W., Walz D. A. Bovine platelet antiheparin protein: platelet factor 4. Ann N Y Acad Sci. 1981;370:668–679. doi: 10.1111/j.1749-6632.1981.tb29774.x. [DOI] [PubMed] [Google Scholar]
- Denton J., Lane D. A., Thunberg L., Slater A. M., Lindahl U. Binding of platelet factor 4 to heparin oligosaccharides. Biochem J. 1983 Feb 1;209(2):455–460. doi: 10.1042/bj2090455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deuel T. F., Keim P. S., Farmer M., Heinrikson R. L. Amino acid sequence of human platelet factor 4. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2256–2258. doi: 10.1073/pnas.74.6.2256. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deuel T. F., Senior R. M., Chang D., Griffin G. L., Heinrikson R. L., Kaiser E. T. Platelet factor 4 is chemotactic for neutrophils and monocytes. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4584–4587. doi: 10.1073/pnas.78.7.4584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doi T., Greenberg S. M., Rosenberg R. D. Structure of the rat platelet factor 4 gene: a marker for megakaryocyte differentiation. Mol Cell Biol. 1987 Feb;7(2):898–904. doi: 10.1128/mcb.7.2.898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffin C. A., Emanuel B. S., LaRocco P., Schwartz E., Poncz M. Human platelet factor 4 gene is mapped to 4q12----q21. Cytogenet Cell Genet. 1987;45(2):67–69. doi: 10.1159/000132431. [DOI] [PubMed] [Google Scholar]
- Guzzo C., Weiner M., Rappaport E., LaRocco P., Surrey S., Poncz M., Schwartz E. An Eco R1 polymorphism of a human platelet factor 4 (PF4) gene. Nucleic Acids Res. 1987 Jan 12;15(1):380–380. doi: 10.1093/nar/15.1.380. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Handin R. I., Cohen H. J. Purification and binding properties of human platelet factor four. J Biol Chem. 1976 Jul 25;251(14):4273–4282. [PubMed] [Google Scholar]
- Holt J. C., Harris M. E., Holt A. M., Lange E., Henschen A., Niewiarowski S. Characterization of human platelet basic protein, a precursor form of low-affinity platelet factor 4 and beta-thromboglobulin. Biochemistry. 1986 Apr 22;25(8):1988–1996. doi: 10.1021/bi00356a023. [DOI] [PubMed] [Google Scholar]
- Holt J. C., Niewiarowski S. Biochemistry of alpha granule proteins. Semin Hematol. 1985 Apr;22(2):151–163. [PubMed] [Google Scholar]
- Jordan R. E., Favreau L. V., Braswell E. H., Rosenberg R. D. Heparin with two binding sites for antithrombin or platelet factor 4. J Biol Chem. 1982 Jan 10;257(1):400–406. [PubMed] [Google Scholar]
- Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
- Katz I. R., Thorbecke G. J., Bell M. K., Yin J. Z., Clarke D., Zucker M. B. Protease-induced immunoregulatory activity of platelet factor 4. Proc Natl Acad Sci U S A. 1986 May;83(10):3491–3495. doi: 10.1073/pnas.83.10.3491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lawler J. W. Prediction of the secondary structure of platelet factor 4 and beta-thromboglobulin from their amino acid sequences. Thromb Res. 1981 Jan 1;21(1-2):121–127. doi: 10.1016/0049-3848(84)90039-2. [DOI] [PubMed] [Google Scholar]
- Levine S. P., Wohl H. Human platelet factor 4: Purification and characterization by affinity chromatography. Purification of human platelet factor 4. J Biol Chem. 1976 Jan 25;251(2):324–328. [PubMed] [Google Scholar]
- Luster A. D., Unkeless J. C., Ravetch J. V. Gamma-interferon transcriptionally regulates an early-response gene containing homology to platelet proteins. Nature. 1985 Jun 20;315(6021):672–676. doi: 10.1038/315672a0. [DOI] [PubMed] [Google Scholar]
- McLauchlan J., Gaffney D., Whitton J. L., Clements J. B. The consensus sequence YGTGTTYY located downstream from the AATAAA signal is required for efficient formation of mRNA 3' termini. Nucleic Acids Res. 1985 Feb 25;13(4):1347–1368. doi: 10.1093/nar/13.4.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Messing J., Crea R., Seeburg P. H. A system for shotgun DNA sequencing. Nucleic Acids Res. 1981 Jan 24;9(2):309–321. doi: 10.1093/nar/9.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morgan F. J., Begg G. S., Chesterman C. N. Complete covalent structure of human platelet factor 4. Thromb Haemost. 1980 Feb 29;42(5):1652–1660. [PubMed] [Google Scholar]
- Needleman S. B., Wunsch C. D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970 Mar;48(3):443–453. doi: 10.1016/0022-2836(70)90057-4. [DOI] [PubMed] [Google Scholar]
- Osterman D. G., Griffin G. L., Senior R. M., Kaiser E. T., Deuel T. F. The carboxyl-terminal tridecapeptide of platelet factor 4 is a potent chemotactic agent for monocytes. Biochem Biophys Res Commun. 1982 Jul 16;107(1):130–135. doi: 10.1016/0006-291x(82)91679-5. [DOI] [PubMed] [Google Scholar]
- Poncz M., Surrey S., LaRocco P., Weiss M. J., Rappaport E. F., Conway T. M., Schwartz E. Cloning and characterization of platelet factor 4 cDNA derived from a human erythroleukemic cell line. Blood. 1987 Jan;69(1):219–223. [PubMed] [Google Scholar]
- Ragsdale C. G., Castor C. W., Roberts D. J., Swartz K. H. Connective tissue activating peptide III. Induction of synthesis and secretion of plasminogen activator by synovial fibroblasts. Arthritis Rheum. 1984 Jun;27(6):663–667. doi: 10.1002/art.1780270609. [DOI] [PubMed] [Google Scholar]
- Richmond A., Balentien E., Thomas H. G., Flaggs G., Barton D. E., Spiess J., Bordoni R., Francke U., Derynck R. Molecular characterization and chromosomal mapping of melanoma growth stimulatory activity, a growth factor structurally related to beta-thromboglobulin. EMBO J. 1988 Jul;7(7):2025–2033. doi: 10.1002/j.1460-2075.1988.tb03042.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmid J., Weissmann C. Induction of mRNA for a serine protease and a beta-thromboglobulin-like protein in mitogen-stimulated human leukocytes. J Immunol. 1987 Jul 1;139(1):250–256. [PubMed] [Google Scholar]
- Senior R. M., Griffin G. L., Huang J. S., Walz D. A., Deuel T. F. Chemotactic activity of platelet alpha granule proteins for fibroblasts. J Cell Biol. 1983 Feb;96(2):382–385. doi: 10.1083/jcb.96.2.382. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sobel E., Martinez H. M. A multiple sequence alignment program. Nucleic Acids Res. 1986 Jan 10;14(1):363–374. doi: 10.1093/nar/14.1.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- St Charles R., Ciaglowski R. E., Walz D., Edwards B. F. X-ray diffraction analysis of crystals of bovine platelet factor 4. J Mol Biol. 1984 Jul 5;176(3):421–423. doi: 10.1016/0022-2836(84)90497-2. [DOI] [PubMed] [Google Scholar]
- Walz A., Peveri P., Aschauer H., Baggiolini M. Purification and amino acid sequencing of NAF, a novel neutrophil-activating factor produced by monocytes. Biochem Biophys Res Commun. 1987 Dec 16;149(2):755–761. doi: 10.1016/0006-291x(87)90432-3. [DOI] [PubMed] [Google Scholar]
- Walz D. A., Wu V. Y., de Lamo R., Dene H., McCoy L. E. Primary structure of human platelet factor 4. Thromb Res. 1977 Dec;11(6):893–898. doi: 10.1016/0049-3848(77)90117-7. [DOI] [PubMed] [Google Scholar]
- Yoshimura T., Matsushima K., Tanaka S., Robinson E. A., Appella E., Oppenheim J. J., Leonard E. J. Purification of a human monocyte-derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokines. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9233–9237. doi: 10.1073/pnas.84.24.9233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Heijne G. Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem. 1983 Jun 1;133(1):17–21. doi: 10.1111/j.1432-1033.1983.tb07424.x. [DOI] [PubMed] [Google Scholar]
- von Heijne G. Signal sequences. The limits of variation. J Mol Biol. 1985 Jul 5;184(1):99–105. doi: 10.1016/0022-2836(85)90046-4. [DOI] [PubMed] [Google Scholar]