Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Mar 9;69(Pt 4):m190. doi: 10.1107/S160053681300603X

4-(Dimethyl­amino)­pyridinium tetra­chloridoferrate(III)

Amina Khadri a,b, Rafika Bouchene a,b, Sofiane Bouacida c,b,*, Hocine Merazig c, Thierry Roisnel d
PMCID: PMC3629474  PMID: 23633992

Abstract

The title salt, (C7H11N2)[FeCl4], consists of one essentially planar (the r.m.s. deviation for all non-H atoms being 0.004 Å) 4-(dimethyl­amino)­pyridinium cation and a tetra­hedral tetra­chloridoferrate(III) anion. The cations and anions are arranged in layers parallel to (010). Besides electrostatic inter­actions, the crystal packing features N—H⋯Cl and C—H⋯Cl hydrogen bonds between cations and anions, forming a three-dimensional network.

Related literature  

For background to hybrid compounds based on protonated substituted N-heterocyclic ligands, see: Bouacida (2008); Bouacida et al. (2007, 2009). For a related structure, see: Nenwa et al. (2010).graphic file with name e-69-0m190-scheme1.jpg

Experimental  

Crystal data  

  • (C7H11N2)[FeCl4]

  • M r = 320.83

  • Monoclinic, Inline graphic

  • a = 9.0360 (2) Å

  • b = 14.0492 (5) Å

  • c = 10.2077 (3) Å

  • β = 98.7259 (9)°

  • V = 1280.85 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.98 mm−1

  • T = 100 K

  • 0.17 × 0.12 × 0.04 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2011) T min = 0.789, T max = 0.924

  • 11192 measured reflections

  • 2925 independent reflections

  • 2146 reflections with I > 2σ(I)

  • R int = 0.041

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.081

  • S = 1.03

  • 2925 reflections

  • 133 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.94 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681300603X/wm2729sup1.cif

e-69-0m190-sup1.cif (19.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681300603X/wm2729Isup2.hkl

e-69-0m190-Isup2.hkl (140.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯Cl2i 0.79 (3) 2.60 (3) 3.369 (3) 165 (3)
C4—H4⋯Cl1i 0.95 2.74 3.604 (3) 152

Symmetry code: (i) Inline graphic.

Acknowledgments

We are grateful to all personel of the LCATM laboratory, Université Oum El Bouaghi, Algeria, for their assistance. Thanks are due to MESRS (Ministére de l’Enseignement Supérieur et de la Recherche Scientifique - Algeria) for financial support via the PNR program.

supplementary crystallographic information

Comment

In the course of previuos studies on intermolecular hydrogen-bonding interactions in transition metal hybrid complexes with N-heterocyclic ligands (Bouacida, 2008; Bouacida et al., 2007, 2009), we report here on synthesis and structural characterization of a new organic/inorganic hybrid, involving Fe(III) and 4-(dimethylamino)pyridine, (C7H11N2)+.[FeCl4]-, (I). The molecular geometry of the constituents and the atom-numbering scheme of (I) are shown in Fig. 1.

The asymmetric unit of (I) consists of tetrahedral [FeCl4]- anions and one protoned 4-(dimethylamino)pyridine cation that is essentially planar; its r.m.s. deviation for all non-H atoms is 0.0043 Å, with a maximum deviation from the mean plane of -0.0094 (2) Å for the C4 atom. The packing of the ionic entities is realized by alternating layers of cations and anions parallel to (010) whereby the dimethylaminopyridinium molecules are oriented in a zig-zag fashion parallel to the (210) and (210) planes, respectively (Fig. 2). The crystal packing is stabilized by N—H···Cl and C—H···Cl hydrogen bonds involving the chloride atoms of the anions as acceptors (Table 1, Fig. 3). All these interactions link the layers together, forming a three-dimensional network and reinforcing the cohesion of the ionic structure.

A similar complex with a 4-(dimethylamino)pyridinium cation but a different metal-based anion, viz. (C7H11N2)+[Cr(C2O4)2(H2O)2]-, has been reported recently (Nenwa et al., 2010).

Experimental

4-(dimethylamino)pyridine and iron(III) chloride hexahydrate were mixed in an equimolar ratio in acidified water (HCl, 37%wt). The solution was kept at room temperature for ten days after which crystals suitable for X-ray diffraction could be isolated.

Refinement

H atoms were localized from Fourier maps but introduced in calculated positions and treated as riding on their parent C atoms with C—H = 0.98 Å (methyl) or C—H = 0.95 Å (aromatic), and with Uiso(H) = 1.2 Ueq(Caryl)and Uiso(H) = 1.5 Ueq(Cmethyl). H3 attached to the pyridinium N atom was refined without constraints.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Packing diagram viewed along [001] showing alterning layers of 4-(dimethylamino)pyridinium cations and [FeCl4] tetrahedraparallel to (010).

Fig. 3.

Fig. 3.

Packing diagram viewed along [100] showing N—H···Cl and C—H···Cl hydrogen-bonding interactions as dashed lines.

Crystal data

(C7H11N2)[FeCl4] F(000) = 644
Mr = 320.83 Dx = 1.664 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2278 reflections
a = 9.0360 (2) Å θ = 2.9–26.5°
b = 14.0492 (5) Å µ = 1.98 mm1
c = 10.2077 (3) Å T = 100 K
β = 98.7259 (9)° Plate, orange
V = 1280.85 (7) Å3 0.17 × 0.12 × 0.04 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 2925 independent reflections
Radiation source: sealed tube 2146 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.041
φ and ω scans θmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2011) h = −8→11
Tmin = 0.789, Tmax = 0.924 k = −18→18
11192 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0258P)2 + 0.6542P] where P = (Fo2 + 2Fc2)/3
2925 reflections (Δ/σ)max = 0.001
133 parameters Δρmax = 0.94 e Å3
0 restraints Δρmin = −0.56 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1 −0.02427 (4) 0.25669 (2) 0.72252 (3) 0.02371 (11)
Cl1 −0.16650 (8) 0.13001 (5) 0.71136 (7) 0.0449 (2)
Cl2 0.11905 (7) 0.25489 (4) 0.91821 (6) 0.03315 (17)
Cl3 0.11063 (8) 0.25245 (5) 0.56193 (7) 0.03676 (18)
Cl4 −0.15646 (8) 0.38804 (5) 0.70930 (7) 0.03842 (18)
C1 0.3730 (3) 0.42873 (17) 0.8197 (3) 0.0281 (6)
H1 0.381 0.4214 0.913 0.034*
C2 0.4618 (3) 0.37690 (19) 0.7516 (3) 0.0374 (7)
H2 0.5322 0.3338 0.7976 0.045*
N3 0.4513 (3) 0.38586 (19) 0.6189 (3) 0.0445 (7)
H3 0.506 (4) 0.355 (2) 0.582 (3) 0.059 (11)*
C4 0.3518 (3) 0.4461 (2) 0.5506 (3) 0.0417 (7)
H4 0.3453 0.4501 0.457 0.05*
C5 0.2614 (3) 0.50068 (19) 0.6130 (3) 0.0331 (6)
H5 0.1935 0.5436 0.5635 0.04*
C6 0.2677 (3) 0.49407 (17) 0.7526 (2) 0.0260 (6)
N7 0.1790 (2) 0.54643 (15) 0.8167 (2) 0.0305 (5)
C8 0.1866 (3) 0.5381 (2) 0.9603 (3) 0.0407 (7)
H8A 0.1606 0.4731 0.9829 0.061*
H8B 0.116 0.5829 0.9908 0.061*
H8C 0.2884 0.5529 1.0036 0.061*
C9 0.0706 (3) 0.6131 (2) 0.7463 (3) 0.0448 (8)
H9A 0.1236 0.6617 0.7024 0.067*
H9B 0.0143 0.6437 0.8095 0.067*
H9C 0.0013 0.5786 0.6797 0.067*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0239 (2) 0.0260 (2) 0.02024 (19) −0.00208 (14) 0.00016 (14) 0.00140 (15)
Cl1 0.0505 (4) 0.0485 (4) 0.0315 (4) −0.0268 (3) −0.0077 (3) 0.0074 (3)
Cl2 0.0327 (3) 0.0370 (4) 0.0261 (3) −0.0089 (3) −0.0072 (3) 0.0047 (3)
Cl3 0.0380 (4) 0.0417 (4) 0.0330 (4) −0.0003 (3) 0.0131 (3) −0.0032 (3)
Cl4 0.0419 (4) 0.0406 (4) 0.0322 (4) 0.0157 (3) 0.0035 (3) 0.0016 (3)
C1 0.0269 (13) 0.0283 (14) 0.0287 (14) −0.0048 (11) 0.0035 (11) 0.0028 (11)
C2 0.0331 (15) 0.0305 (15) 0.050 (2) −0.0057 (12) 0.0092 (13) 0.0032 (13)
N3 0.0481 (16) 0.0367 (15) 0.0554 (18) −0.0106 (12) 0.0295 (14) −0.0140 (13)
C4 0.0578 (19) 0.0419 (17) 0.0266 (16) −0.0218 (15) 0.0103 (14) −0.0071 (13)
C5 0.0404 (16) 0.0321 (15) 0.0255 (14) −0.0088 (12) 0.0002 (12) −0.0008 (11)
C6 0.0276 (14) 0.0264 (13) 0.0235 (13) −0.0107 (11) 0.0022 (11) −0.0001 (10)
N7 0.0314 (12) 0.0300 (12) 0.0299 (13) −0.0015 (9) 0.0036 (10) −0.0003 (10)
C8 0.0467 (17) 0.0427 (17) 0.0360 (17) −0.0037 (14) 0.0167 (14) −0.0030 (13)
C9 0.0347 (16) 0.0370 (17) 0.061 (2) 0.0049 (13) 0.0025 (14) 0.0062 (15)

Geometric parameters (Å, º)

Fe1—Cl3 2.1870 (7) C4—H4 0.95
Fe1—Cl1 2.1882 (7) C5—C6 1.420 (3)
Fe1—Cl4 2.1912 (7) C5—H5 0.95
Fe1—Cl2 2.2097 (7) C6—N7 1.331 (3)
C1—C2 1.351 (4) N7—C8 1.462 (3)
C1—C6 1.421 (3) N7—C9 1.463 (3)
C1—H1 0.95 C8—H8A 0.98
C2—N3 1.350 (4) C8—H8B 0.98
C2—H2 0.95 C8—H8C 0.98
N3—C4 1.349 (4) C9—H9A 0.98
N3—H3 0.79 (3) C9—H9B 0.98
C4—C5 1.348 (4) C9—H9C 0.98
Cl3—Fe1—Cl1 109.18 (3) C6—C5—H5 119.9
Cl3—Fe1—Cl4 109.72 (3) N7—C6—C5 121.4 (2)
Cl1—Fe1—Cl4 111.80 (3) N7—C6—C1 122.0 (2)
Cl3—Fe1—Cl2 111.12 (3) C5—C6—C1 116.6 (2)
Cl1—Fe1—Cl2 107.27 (3) C6—N7—C8 120.6 (2)
Cl4—Fe1—Cl2 107.73 (3) C6—N7—C9 121.4 (2)
C2—C1—C6 120.4 (3) C8—N7—C9 118.0 (2)
C2—C1—H1 119.8 N7—C8—H8A 109.5
C6—C1—H1 119.8 N7—C8—H8B 109.5
N3—C2—C1 120.6 (3) H8A—C8—H8B 109.5
N3—C2—H2 119.7 N7—C8—H8C 109.5
C1—C2—H2 119.7 H8A—C8—H8C 109.5
C4—N3—C2 121.1 (3) H8B—C8—H8C 109.5
C4—N3—H3 121 (3) N7—C9—H9A 109.5
C2—N3—H3 118 (3) N7—C9—H9B 109.5
C5—C4—N3 121.1 (3) H9A—C9—H9B 109.5
C5—C4—H4 119.4 N7—C9—H9C 109.5
N3—C4—H4 119.4 H9A—C9—H9C 109.5
C4—C5—C6 120.1 (3) H9B—C9—H9C 109.5
C4—C5—H5 119.9
C6—C1—C2—N3 −0.4 (4) C2—C1—C6—N7 −179.8 (2)
C1—C2—N3—C4 −0.4 (4) C2—C1—C6—C5 0.4 (3)
C2—N3—C4—C5 1.3 (4) C5—C6—N7—C8 179.6 (2)
N3—C4—C5—C6 −1.3 (4) C1—C6—N7—C8 −0.2 (4)
C4—C5—C6—N7 −179.4 (2) C5—C6—N7—C9 0.1 (4)
C4—C5—C6—C1 0.4 (3) C1—C6—N7—C9 −179.7 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3···Cl2i 0.79 (3) 2.60 (3) 3.369 (3) 165 (3)
C4—H4···Cl1i 0.95 2.74 3.604 (3) 152

Symmetry code: (i) x+1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2729).

References

  1. Bouacida, S. (2008). PhD thesis, Montouri–Constantine University, Algeria.
  2. Bouacida, S., Belhouas, R., Kechout, H., Merazig, H. & Bénard-Rocherullé, P. (2009). Acta Cryst. E65, o628–o629. [DOI] [PMC free article] [PubMed]
  3. Bouacida, S., Merazig, H., Benard-Rocherulle, P. & Rizzoli, C. (2007). Acta Cryst. E63, m379–m381.
  4. Brandenburg, K. & Berndt, M. (2001). DIAMOND Crystal Impact, Bonn, Germany.
  5. Bruker (2011). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Nenwa, J., Belombe, M. M., Ngoune, J. & Fokwa, B. P. T. (2010). Acta Cryst. E66, m1410. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681300603X/wm2729sup1.cif

e-69-0m190-sup1.cif (19.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681300603X/wm2729Isup2.hkl

e-69-0m190-Isup2.hkl (140.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES