Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Mar 13;69(Pt 4):m202–m203. doi: 10.1107/S1600536813006430

Poly[[diaqua­bis­{μ-4-[6-(4-carb­oxy­phen­yl)-4,4′-bipyridin-2-yl]benzoato-κ2 O:N 1′}copper(II)] dimethyl­formamide tetra­solvate]

Yabin Sun a, E Song a, Daguang Wang b,*
PMCID: PMC3629482  PMID: 23634000

Abstract

In the title compound, {[Cu(C24H15N2O4)2(H2O)2]·4C3H7NO}n, the CuII ion, lying on an inversion center, is six-coordinated by two N atoms from two 4-[6-(4-carb­oxy­phen­yl)-4,4′-bipyridin-2-yl]benzoate (L) ligands, two deprotonated carboxyl­ate O atoms from two other symmetry-related L ligands and two water mol­ecules in a slightly distorted octa­hedral geometry. The CuII atoms are linked by the bridging ligands into a layer parallel to (101). The presence of intra­layer O—H⋯O hydrogen bonds and π–π inter­actions between the pyridine and benzene rings [centroid–centroid distances = 3.808 (2) and 3.927 (2) Å] stabilizes the layer. Further O—H⋯O hydrogen bonds link the layers and the dimethyl­formamide solvent mol­ecules.

Related literature  

For the design of metal-organic coordination polymers, see: Ge & Song (2012); Herm et al. (2011); Liu et al. (2010); Wang et al. (2010). For a related structure, see: Xia et al. (2012). graphic file with name e-69-0m202-scheme1.jpg

Experimental  

Crystal data  

  • [Cu(C24H15N2O4)2(H2O)2]·4C3H7NO

  • M r = 1182.73

  • Monoclinic, Inline graphic

  • a = 7.7161 (17) Å

  • b = 17.550 (4) Å

  • c = 20.947 (4) Å

  • β = 96.800 (4)°

  • V = 2816.6 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 293 K

  • 0.27 × 0.25 × 0.20 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.885, T max = 0.913

  • 14622 measured reflections

  • 5226 independent reflections

  • 3371 reflections with I > 2σ(I)

  • R int = 0.058

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.061

  • wR(F 2) = 0.185

  • S = 1.04

  • 5226 reflections

  • 376 parameters

  • H-atom parameters constrained

  • Δρmax = 0.93 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813006430/hy2619sup1.cif

e-69-0m202-sup1.cif (26KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813006430/hy2619Isup2.hkl

e-69-0m202-Isup2.hkl (255.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O2i 0.82 1.86 2.584 (4) 146
O1W—H1A⋯O5ii 0.85 1.98 2.808 (5) 165
O1W—H1B⋯O2iii 0.85 1.95 2.758 (4) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors are grateful for financial aid from The First Hospital of Jilin University.

supplementary crystallographic information

Comment

Metal-organic coordination polymers (MOCPs) with infinite one-, two- or three-dimensional structures are assembled with metal ions or polynuclear clusters as nodes and organic ligands as linkers (Herm et al., 2011; Liu et al., 2010). Recently, the chemists have devoted themselves to design and synthesize MOCPs, not only due to their potential applications in the realm of gas adsorption and separation, catalysis, magnetism, luminescence, host–guest chemistry and etc, but also for their aesthetic and often complicated architectures and topologies (Ge & Song, 2012; Wang et al., 2010). In order to extend the investigations in this field, we used a multifunctional ligand, 4,4'-(4,4'-bipyridine-2,6-diyl)dibenzoic acid (bpydbH2) to design and synthesize the title copper(II) complex and report its structure here.

The asymmetric unit of the title compound contains one CuII ion lying on an inversion center, one anionic bpydbH ligand, one aqua ligand and two lattice DMF molecules. As shown in Fig. 1, the CuII ion is six-coordinated by two N atoms from two bpydbH ligands, two deprotonated carboxylate O atoms from two other symmetry-related bpydbH ligands and two aqua ligands, furnishing a slightly distorted octahedral geometry. The bond distances and angles are in a normal range (Xia et al., 2012). The Cu nodes are extended by the bridging bpydbH linkers into a layer parallel to (101) (Fig. 2). The presence of intralayer O—H···O hydrogen bonds and π–π interactions between the pyridine and benzene rings [centroid–centroid diatances = 3.808 (2) and 3.927 (2) Å] stabilizes the single layer.

Experimental

Cu(NO3)2.3H2O (0.0063 g, 0.025 mmol) and bpydbH2 (0.0099 g, 0.025 mmol) were suspended in a mixed solvent of dimethylformamide (DMF) (4 ml) and H2O (0.5 ml), and heated in a 15 ml Teflon-lined stainless-steel autoclave at 80°C for 3 days. After the autoclave was cooled to room temperature slowly, green crystals were collected by filtration and washed with DMF, and dried in air (yield: 65% based on Cu).

Refinement

H atoms on C and carboxyl O atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93, 0.96 and O—H = 0.82 Å and with Uiso(H) = 1.2(1.5 for methyl and carboxyl)Ueq(C,O). H atoms of water molecules were located in a difference Fourier map and refined as riding atoms, with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) 1/2 + x, 3/2 - y, -1/2 + z; (ii) 3/2 - x, -1/2 + y, 1/2 - z; (iii) 2 - x, 1 - y, -z.]

Fig. 2.

Fig. 2.

View of the layer structure of the title compound.

Crystal data

[Cu(C24H15N2O4)2(H2O)2]·4C3H7NO F(000) = 1238
Mr = 1182.73 Dx = 1.395 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 5226 reflections
a = 7.7161 (17) Å θ = 1.0–26.0°
b = 17.550 (4) Å µ = 0.46 mm1
c = 20.947 (4) Å T = 293 K
β = 96.800 (4)° Block, green
V = 2816.6 (10) Å3 0.27 × 0.25 × 0.20 mm
Z = 2

Data collection

Bruker APEXII CCD diffractometer 5226 independent reflections
Radiation source: fine-focus sealed tube 3371 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.058
φ and ω scans θmax = 25.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −9→7
Tmin = 0.885, Tmax = 0.913 k = −21→21
14622 measured reflections l = −20→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.185 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0891P)2 + 2.0095P] where P = (Fo2 + 2Fc2)/3
5226 reflections (Δ/σ)max < 0.001
376 parameters Δρmax = 0.93 e Å3
0 restraints Δρmin = −0.39 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 1.0000 0.5000 0.0000 0.0362 (2)
C1 0.8452 (6) 1.2336 (2) −0.1386 (2) 0.0432 (10)
C2 0.8060 (5) 1.1653 (2) −0.10151 (19) 0.0347 (9)
C3 0.7251 (5) 1.1715 (2) −0.0455 (2) 0.0369 (10)
H3 0.6854 1.2186 −0.0330 0.044*
C4 0.7040 (5) 1.1079 (2) −0.0088 (2) 0.0350 (9)
H4 0.6517 1.1128 0.0288 0.042*
C5 0.7592 (5) 1.0363 (2) −0.02669 (18) 0.0286 (8)
C6 0.8380 (5) 1.0305 (2) −0.08253 (19) 0.0352 (9)
H6 0.8762 0.9832 −0.0953 0.042*
C7 0.8607 (5) 1.0943 (2) −0.11976 (19) 0.0376 (10)
H7 0.9132 1.0894 −0.1573 0.045*
C8 0.7389 (5) 0.9695 (2) 0.01565 (19) 0.0302 (8)
C9 0.7683 (5) 0.8950 (2) −0.00365 (18) 0.0304 (9)
H9 0.7972 0.8853 −0.0447 0.036*
C10 0.7540 (5) 0.83558 (19) 0.03927 (18) 0.0280 (8)
C11 0.7072 (5) 0.8537 (2) 0.09959 (18) 0.0314 (9)
H11 0.6958 0.8154 0.1295 0.038*
C12 0.6774 (5) 0.9291 (2) 0.11507 (18) 0.0299 (8)
C13 0.6253 (5) 0.9511 (2) 0.17864 (18) 0.0301 (9)
C14 0.5242 (5) 1.0156 (2) 0.18392 (19) 0.0358 (9)
H14 0.4924 1.0455 0.1478 0.043*
C15 0.4702 (5) 1.0358 (2) 0.24194 (19) 0.0372 (10)
H15 0.4004 1.0786 0.2445 0.045*
C16 0.5196 (5) 0.9925 (2) 0.29668 (18) 0.0312 (9)
C17 0.6242 (5) 0.9290 (2) 0.29215 (19) 0.0378 (10)
H17 0.6586 0.8998 0.3285 0.045*
C18 0.6777 (5) 0.9089 (2) 0.23352 (19) 0.0366 (9)
H18 0.7494 0.8667 0.2310 0.044*
C19 0.4600 (6) 1.0145 (2) 0.3597 (2) 0.0361 (10)
C20 0.7944 (5) 0.75539 (19) 0.02344 (17) 0.0288 (8)
C21 0.9191 (5) 0.73870 (19) −0.01677 (18) 0.0307 (9)
H21 0.9689 0.7778 −0.0384 0.037*
C22 0.9695 (5) 0.6647 (2) −0.02478 (19) 0.0339 (9)
H22 1.0543 0.6549 −0.0517 0.041*
C23 0.7732 (5) 0.6214 (2) 0.04100 (19) 0.0360 (9)
H23 0.7197 0.5811 0.0598 0.043*
C24 0.7177 (5) 0.6942 (2) 0.05158 (18) 0.0342 (9)
H24 0.6294 0.7025 0.0774 0.041*
C25 0.6692 (8) 0.6406 (4) −0.1720 (3) 0.0829 (19)
H25A 0.7059 0.6773 −0.2016 0.124*
H25B 0.6144 0.5984 −0.1955 0.124*
H25C 0.7689 0.6229 −0.1442 0.124*
C26 0.5118 (8) 0.7558 (3) −0.1443 (3) 0.0756 (16)
H26A 0.5739 0.7741 −0.1783 0.113*
H26B 0.5493 0.7833 −0.1055 0.113*
H26C 0.3889 0.7633 −0.1558 0.113*
C27 0.4770 (6) 0.6364 (3) −0.0897 (2) 0.0543 (12)
H27 0.5082 0.5854 −0.0843 0.065*
C28 0.4517 (16) 1.2769 (5) −0.2557 (5) 0.203 (6)
H28A 0.4153 1.2642 −0.2148 0.304*
H28B 0.5656 1.2561 −0.2586 0.304*
H28C 0.3703 1.2562 −0.2895 0.304*
C29 0.4063 (11) 1.3970 (6) −0.2090 (4) 0.157 (4)
H29A 0.3787 1.3613 −0.1770 0.235*
H29B 0.3054 1.4274 −0.2228 0.235*
H29C 0.4999 1.4294 −0.1912 0.235*
C30 0.5028 (11) 1.3864 (4) −0.3123 (4) 0.119 (3)
H30 0.4860 1.4387 −0.3166 0.142*
N1 0.6925 (4) 0.98644 (16) 0.07362 (15) 0.0305 (7)
N2 0.9010 (4) 0.60580 (17) 0.00477 (15) 0.0331 (8)
N3 0.5471 (5) 0.6755 (2) −0.13415 (19) 0.0533 (10)
N4 0.4576 (6) 1.3570 (2) −0.2622 (2) 0.0619 (11)
O1 0.5313 (4) 0.98064 (14) 0.40897 (13) 0.0395 (7)
O2 0.3418 (4) 1.06386 (16) 0.35908 (14) 0.0488 (8)
O3 0.9397 (5) 1.23445 (17) −0.18056 (16) 0.0582 (9)
O4 0.7673 (4) 1.29571 (17) −0.11906 (16) 0.0607 (9)
H4A 0.7916 1.3324 −0.1405 0.091*
O5 0.3740 (4) 0.6624 (2) −0.05498 (17) 0.0651 (10)
O6 0.5670 (7) 1.3545 (2) −0.3567 (2) 0.1082 (17)
O1W 1.3019 (4) 0.54357 (17) 0.02770 (15) 0.0552 (8)
H1A 1.3236 0.5847 0.0087 0.083*
H1B 1.2828 0.5552 0.0656 0.083*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0628 (5) 0.0222 (3) 0.0263 (4) 0.0050 (3) 0.0164 (3) 0.0015 (3)
C1 0.054 (3) 0.033 (2) 0.042 (3) −0.001 (2) 0.005 (2) 0.0034 (19)
C2 0.036 (2) 0.031 (2) 0.037 (2) −0.0049 (17) 0.0019 (18) 0.0061 (17)
C3 0.040 (2) 0.0251 (19) 0.046 (3) 0.0037 (16) 0.010 (2) 0.0004 (17)
C4 0.039 (2) 0.0273 (19) 0.041 (2) 0.0008 (17) 0.0146 (19) 0.0013 (17)
C5 0.032 (2) 0.0272 (19) 0.027 (2) −0.0010 (16) 0.0060 (16) 0.0009 (15)
C6 0.048 (2) 0.0254 (18) 0.033 (2) 0.0009 (17) 0.0094 (19) −0.0029 (16)
C7 0.052 (3) 0.035 (2) 0.028 (2) −0.0037 (18) 0.0104 (19) 0.0002 (17)
C8 0.034 (2) 0.0256 (18) 0.032 (2) 0.0004 (16) 0.0066 (17) 0.0011 (16)
C9 0.037 (2) 0.0284 (19) 0.027 (2) 0.0006 (16) 0.0088 (17) −0.0017 (16)
C10 0.033 (2) 0.0240 (18) 0.028 (2) −0.0001 (15) 0.0067 (16) −0.0014 (15)
C11 0.042 (2) 0.0257 (19) 0.027 (2) 0.0008 (16) 0.0090 (17) 0.0019 (16)
C12 0.036 (2) 0.0275 (19) 0.027 (2) −0.0004 (16) 0.0085 (17) 0.0000 (16)
C13 0.038 (2) 0.0284 (19) 0.025 (2) −0.0028 (16) 0.0074 (17) −0.0047 (15)
C14 0.048 (2) 0.033 (2) 0.027 (2) 0.0025 (17) 0.0097 (19) 0.0007 (16)
C15 0.050 (2) 0.030 (2) 0.034 (2) 0.0050 (18) 0.0104 (19) −0.0020 (17)
C16 0.041 (2) 0.0259 (19) 0.029 (2) −0.0039 (16) 0.0126 (17) −0.0045 (16)
C17 0.051 (3) 0.032 (2) 0.032 (2) 0.0009 (18) 0.0092 (19) 0.0052 (17)
C18 0.047 (2) 0.031 (2) 0.033 (2) 0.0078 (18) 0.0118 (19) −0.0013 (17)
C19 0.050 (2) 0.026 (2) 0.035 (2) −0.0054 (18) 0.014 (2) −0.0043 (17)
C20 0.039 (2) 0.0239 (18) 0.024 (2) 0.0012 (16) 0.0051 (16) −0.0003 (15)
C21 0.043 (2) 0.0225 (18) 0.029 (2) −0.0019 (16) 0.0141 (17) 0.0005 (15)
C22 0.047 (2) 0.0275 (19) 0.030 (2) −0.0006 (17) 0.0146 (18) −0.0004 (16)
C23 0.052 (3) 0.028 (2) 0.030 (2) −0.0039 (18) 0.0140 (19) 0.0014 (16)
C24 0.045 (2) 0.031 (2) 0.029 (2) 0.0012 (17) 0.0158 (18) −0.0017 (16)
C25 0.081 (4) 0.119 (5) 0.052 (4) 0.025 (4) 0.022 (3) 0.004 (3)
C26 0.097 (4) 0.062 (3) 0.069 (4) −0.003 (3) 0.017 (3) 0.009 (3)
C27 0.056 (3) 0.053 (3) 0.054 (3) −0.005 (2) 0.005 (3) −0.002 (2)
C28 0.303 (15) 0.088 (6) 0.196 (11) −0.064 (8) −0.057 (10) 0.066 (7)
C29 0.132 (7) 0.259 (12) 0.082 (6) 0.104 (8) 0.025 (5) 0.000 (6)
C30 0.167 (8) 0.079 (5) 0.123 (7) 0.022 (5) 0.067 (6) 0.031 (5)
N1 0.0353 (17) 0.0303 (17) 0.0272 (18) −0.0014 (13) 0.0090 (14) −0.0030 (13)
N2 0.049 (2) 0.0260 (16) 0.0265 (18) 0.0009 (14) 0.0128 (15) 0.0000 (13)
N3 0.054 (2) 0.062 (3) 0.046 (2) 0.000 (2) 0.0151 (19) 0.0015 (19)
N4 0.071 (3) 0.059 (3) 0.061 (3) 0.012 (2) 0.027 (2) 0.019 (2)
O1 0.0655 (19) 0.0274 (14) 0.0276 (16) −0.0003 (13) 0.0135 (14) −0.0001 (11)
O2 0.071 (2) 0.0377 (16) 0.0413 (19) 0.0105 (15) 0.0232 (15) −0.0045 (13)
O3 0.082 (2) 0.0458 (19) 0.051 (2) −0.0038 (17) 0.0217 (19) 0.0064 (15)
O4 0.081 (2) 0.0349 (17) 0.070 (2) 0.0016 (16) 0.0251 (19) 0.0134 (16)
O5 0.060 (2) 0.075 (2) 0.064 (2) −0.0093 (18) 0.0235 (19) −0.0012 (19)
O6 0.179 (5) 0.077 (3) 0.083 (3) −0.005 (3) 0.075 (3) −0.021 (2)
O1W 0.072 (2) 0.0441 (18) 0.053 (2) −0.0041 (16) 0.0239 (17) −0.0006 (15)

Geometric parameters (Å, º)

Cu1—O1i 1.980 (3) C19—O2 1.256 (5)
Cu1—O1ii 1.980 (3) C19—O1 1.260 (5)
Cu1—N2 2.015 (3) C20—C21 1.383 (5)
Cu1—N2iii 2.015 (3) C20—C24 1.390 (5)
C1—O3 1.207 (5) C21—C22 1.371 (5)
C1—O4 1.332 (5) C21—H21 0.9300
C1—C2 1.480 (5) C22—N2 1.345 (5)
C2—C7 1.383 (5) C22—H22 0.9300
C2—C3 1.398 (5) C23—N2 1.342 (5)
C3—C4 1.375 (5) C23—C24 1.374 (5)
C3—H3 0.9300 C23—H23 0.9300
C4—C5 1.393 (5) C24—H24 0.9300
C4—H4 0.9300 C25—N3 1.439 (6)
C5—C6 1.385 (5) C25—H25A 0.9600
C5—C8 1.490 (5) C25—H25B 0.9600
C6—C7 1.388 (5) C25—H25C 0.9600
C6—H6 0.9300 C26—N3 1.447 (6)
C7—H7 0.9300 C26—H26A 0.9600
C8—N1 1.340 (5) C26—H26B 0.9600
C8—C9 1.394 (5) C26—H26C 0.9600
C9—C10 1.390 (5) C27—O5 1.226 (5)
C9—H9 0.9300 C27—N3 1.323 (6)
C10—C11 1.392 (5) C27—H27 0.9300
C10—C20 1.487 (5) C28—N4 1.413 (9)
C11—C12 1.388 (5) C28—H28A 0.9600
C11—H11 0.9300 C28—H28B 0.9600
C12—N1 1.343 (5) C28—H28C 0.9600
C12—C13 1.487 (5) C29—N4 1.411 (8)
C13—C14 1.385 (5) C29—H29A 0.9600
C13—C18 1.387 (5) C29—H29B 0.9600
C14—C15 1.377 (5) C29—H29C 0.9600
C14—H14 0.9300 C30—O6 1.238 (8)
C15—C16 1.391 (5) C30—N4 1.255 (7)
C15—H15 0.9300 C30—H30 0.9300
C16—C17 1.385 (5) O1—Cu1iv 1.980 (3)
C16—C19 1.499 (5) O4—H4A 0.8200
C17—C18 1.387 (5) O1W—H1A 0.8501
C17—H17 0.9300 O1W—H1B 0.8489
C18—H18 0.9300
O1i—Cu1—O1ii 180.0 O2—C19—C16 117.9 (4)
O1i—Cu1—N2 91.16 (11) O1—C19—C16 116.7 (4)
O1ii—Cu1—N2 88.84 (11) C21—C20—C24 117.2 (3)
O1i—Cu1—N2iii 88.84 (11) C21—C20—C10 121.0 (3)
O1ii—Cu1—N2iii 91.16 (11) C24—C20—C10 121.7 (3)
N2—Cu1—N2iii 180.0 C22—C21—C20 120.2 (3)
O3—C1—O4 123.2 (4) C22—C21—H21 119.9
O3—C1—C2 124.8 (4) C20—C21—H21 119.9
O4—C1—C2 112.0 (4) N2—C22—C21 122.6 (4)
C7—C2—C3 118.9 (3) N2—C22—H22 118.7
C7—C2—C1 119.8 (4) C21—C22—H22 118.7
C3—C2—C1 121.1 (4) N2—C23—C24 123.0 (3)
C4—C3—C2 120.0 (4) N2—C23—H23 118.5
C4—C3—H3 120.0 C24—C23—H23 118.5
C2—C3—H3 120.0 C23—C24—C20 119.6 (4)
C3—C4—C5 121.4 (4) C23—C24—H24 120.2
C3—C4—H4 119.3 C20—C24—H24 120.2
C5—C4—H4 119.3 N3—C25—H25A 109.5
C6—C5—C4 118.3 (3) N3—C25—H25B 109.5
C6—C5—C8 122.2 (3) H25A—C25—H25B 109.5
C4—C5—C8 119.5 (3) N3—C25—H25C 109.5
C5—C6—C7 120.8 (4) H25A—C25—H25C 109.5
C5—C6—H6 119.6 H25B—C25—H25C 109.5
C7—C6—H6 119.6 N3—C26—H26A 109.5
C2—C7—C6 120.6 (4) N3—C26—H26B 109.5
C2—C7—H7 119.7 H26A—C26—H26B 109.5
C6—C7—H7 119.7 N3—C26—H26C 109.5
N1—C8—C9 122.8 (3) H26A—C26—H26C 109.5
N1—C8—C5 115.0 (3) H26B—C26—H26C 109.5
C9—C8—C5 122.2 (3) O5—C27—N3 124.9 (5)
C10—C9—C8 119.2 (3) O5—C27—H27 117.6
C10—C9—H9 120.4 N3—C27—H27 117.6
C8—C9—H9 120.4 N4—C28—H28A 109.5
C9—C10—C11 117.7 (3) N4—C28—H28B 109.5
C9—C10—C20 122.1 (3) H28A—C28—H28B 109.5
C11—C10—C20 120.2 (3) N4—C28—H28C 109.5
C12—C11—C10 119.9 (3) H28A—C28—H28C 109.5
C12—C11—H11 120.1 H28B—C28—H28C 109.5
C10—C11—H11 120.1 N4—C29—H29A 109.5
N1—C12—C11 122.3 (3) N4—C29—H29B 109.5
N1—C12—C13 115.9 (3) H29A—C29—H29B 109.5
C11—C12—C13 121.8 (3) N4—C29—H29C 109.5
C14—C13—C18 118.8 (3) H29A—C29—H29C 109.5
C14—C13—C12 119.9 (3) H29B—C29—H29C 109.5
C18—C13—C12 121.3 (3) O6—C30—N4 128.2 (7)
C15—C14—C13 120.9 (4) O6—C30—H30 115.9
C15—C14—H14 119.6 N4—C30—H30 115.9
C13—C14—H14 119.6 C8—N1—C12 118.2 (3)
C14—C15—C16 120.3 (4) C23—N2—C22 117.3 (3)
C14—C15—H15 119.9 C23—N2—Cu1 121.6 (2)
C16—C15—H15 119.9 C22—N2—Cu1 120.9 (3)
C17—C16—C15 119.2 (4) C27—N3—C25 121.1 (5)
C17—C16—C19 120.7 (4) C27—N3—C26 121.6 (4)
C15—C16—C19 120.1 (3) C25—N3—C26 117.3 (4)
C16—C17—C18 120.2 (4) C30—N4—C29 125.9 (7)
C16—C17—H17 119.9 C30—N4—C28 120.2 (7)
C18—C17—H17 119.9 C29—N4—C28 113.8 (7)
C17—C18—C13 120.6 (4) C19—O1—Cu1iv 128.1 (3)
C17—C18—H18 119.7 C1—O4—H4A 109.5
C13—C18—H18 119.7 H1A—O1W—H1B 107.4
O2—C19—O1 125.4 (4)
O3—C1—C2—C7 −8.6 (7) C19—C16—C17—C18 179.6 (4)
O4—C1—C2—C7 173.1 (4) C16—C17—C18—C13 −1.0 (6)
O3—C1—C2—C3 166.8 (4) C14—C13—C18—C17 2.5 (6)
O4—C1—C2—C3 −11.4 (6) C12—C13—C18—C17 −178.2 (3)
C7—C2—C3—C4 1.3 (6) C17—C16—C19—O2 −167.7 (4)
C1—C2—C3—C4 −174.2 (4) C15—C16—C19—O2 12.3 (5)
C2—C3—C4—C5 −1.1 (6) C17—C16—C19—O1 11.0 (5)
C3—C4—C5—C6 0.6 (6) C15—C16—C19—O1 −168.9 (4)
C3—C4—C5—C8 178.0 (4) C9—C10—C20—C21 30.9 (6)
C4—C5—C6—C7 −0.2 (6) C11—C10—C20—C21 −146.3 (4)
C8—C5—C6—C7 −177.6 (4) C9—C10—C20—C24 −153.5 (4)
C3—C2—C7—C6 −1.0 (6) C11—C10—C20—C24 29.2 (5)
C1—C2—C7—C6 174.6 (4) C24—C20—C21—C22 −3.5 (6)
C5—C6—C7—C2 0.5 (6) C10—C20—C21—C22 172.2 (4)
C6—C5—C8—N1 167.3 (3) C20—C21—C22—N2 0.6 (6)
C4—C5—C8—N1 −10.0 (5) N2—C23—C24—C20 0.7 (6)
C6—C5—C8—C9 −11.9 (6) C21—C20—C24—C23 2.9 (6)
C4—C5—C8—C9 170.7 (4) C10—C20—C24—C23 −172.8 (4)
N1—C8—C9—C10 −1.8 (6) C9—C8—N1—C12 1.4 (5)
C5—C8—C9—C10 177.3 (3) C5—C8—N1—C12 −177.9 (3)
C8—C9—C10—C11 1.2 (5) C11—C12—N1—C8 −0.4 (5)
C8—C9—C10—C20 −176.1 (3) C13—C12—N1—C8 −179.9 (3)
C9—C10—C11—C12 −0.3 (5) C24—C23—N2—C22 −3.6 (6)
C20—C10—C11—C12 177.1 (3) C24—C23—N2—Cu1 171.8 (3)
C10—C11—C12—N1 −0.1 (6) C21—C22—N2—C23 3.0 (6)
C10—C11—C12—C13 179.4 (3) C21—C22—N2—Cu1 −172.4 (3)
N1—C12—C13—C14 28.6 (5) O1i—Cu1—N2—C23 −34.5 (3)
C11—C12—C13—C14 −151.0 (4) O1ii—Cu1—N2—C23 145.5 (3)
N1—C12—C13—C18 −150.7 (4) O1i—Cu1—N2—C22 140.8 (3)
C11—C12—C13—C18 29.8 (6) O1ii—Cu1—N2—C22 −39.2 (3)
C18—C13—C14—C15 −2.7 (6) O5—C27—N3—C25 179.0 (5)
C12—C13—C14—C15 178.1 (4) O5—C27—N3—C26 2.5 (8)
C13—C14—C15—C16 1.3 (6) O6—C30—N4—C29 171.2 (8)
C14—C15—C16—C17 0.3 (6) O6—C30—N4—C28 −10.0 (14)
C14—C15—C16—C19 −179.8 (4) O2—C19—O1—Cu1iv −6.5 (6)
C15—C16—C17—C18 −0.4 (6) C16—C19—O1—Cu1iv 174.9 (2)

Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) x+1/2, −y+3/2, z−1/2; (iii) −x+2, −y+1, −z; (iv) −x+3/2, y+1/2, −z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O4—H4A···O2v 0.82 1.86 2.584 (4) 146
O1W—H1A···O5vi 0.85 1.98 2.808 (5) 165
O1W—H1B···O2i 0.85 1.95 2.758 (4) 159

Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (v) x+1/2, −y+5/2, z−1/2; (vi) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2619).

References

  1. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Ge, X. & Song, S. (2012). Acta Cryst. E68, m1413. [DOI] [PMC free article] [PubMed]
  5. Herm, Z. R., Swisher, J. A., Smit, B., Krishna, R. & Long, J. R. (2011). J. Am. Chem. Soc. 133, 5664–5667. [DOI] [PubMed]
  6. Liu, Y., Xuan, W. & Cui, Y. (2010). Adv. Mater. 22, 4112–4135. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Wang, G.-H., Lei, Y.-Q., Wang, N., He, R.-L., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2010). Cryst. Growth Des. 10, 534–540.
  9. Xia, Q.-H., Guo, Z.-F., Liu, L., Wang, Z. & Li, B. (2012). Acta Cryst. E68, m1395. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813006430/hy2619sup1.cif

e-69-0m202-sup1.cif (26KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813006430/hy2619Isup2.hkl

e-69-0m202-Isup2.hkl (255.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES